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Abstract

Background: Metagenomic studies carried out in the past decade have led to an enhanced understanding of the gut

microbiome in human health; however, the Indian gut microbiome has not been well explored. We analyzed the gut

microbiome of 110 healthy individuals from two distinct locations (North-Central and Southern) in India using multi-omics

approaches, including 16S rRNA gene amplicon sequencing, whole-genome shotgun metagenomic sequencing, and

metabolomic profiling of fecal and serum samples. Results: The gene catalogue established in this study emphasizes the

uniqueness of the Indian gut microbiome in comparison to other populations. The gut microbiome of the cohort from

North-Central India, which was primarily consuming a plant-based diet, was found to be associated with Prevotella and also

showed an enrichment of branched chain amino acid (BCAA) and lipopolysaccharide biosynthesis pathways. In contrast,

the gut microbiome of the cohort from Southern India, which was consuming an omnivorous diet, showed associations

with Bacteroides, Ruminococcus, and Faecalibacterium and had an enrichment of short chain fatty acid biosynthesis pathway

and BCAA transporters. This corroborated well with the metabolomics results, which showed higher concentration of

BCAAs in the serum metabolome of the North-Central cohort and an association with Prevotella. In contrast, the

concentration of BCAAs was found to be higher in the fecal metabolome of the Southern-India cohort and showed a positive

correlation with the higher abundance of BCAA transporters. Conclusions: The study reveals the unique composition of the

Indian gut microbiome, establishes the Indian gut microbial gene catalogue, and compares it with the gut microbiome of

Received: 11 June 2018; Revised: 2 November 2018; Accepted: 10 January 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

1

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ig

a
s
c
ie

n
c
e
/a

rtic
le

/8
/3

/g
iz

0
0
4
/5

3
0
4
3
6
7
 b

y
 g

u
e
s
t o

n
 0

5
 F

e
b
ru

a
ry

 2
0
2
1



2 Indian gut microbiome

other populations. The functional associations revealed using metagenomic and metabolomic approaches provide novel

insights on the gut-microbe-metabolic axis, which will be useful for future epidemiological and translational researches.

Keywords: Indian gut microbiome; whole-genome shotgun; metagenomics; metabolomics; integrated gene catalog;

metagenome-wide association study; core gut microbiome; short chain fatty acids; branched chain amino acids

Background

Determining the taxonomic and functional composition of a

healthy gut microbiome across different populations is essen-

tial for understanding its role in maintaining human health.

Several large-scale, world-wide microbiome projects have re-

vealed variability in the gut microbial composition of healthy

individuals due to factors such as mode of delivery, age, ge-

ographical location, diet, and lifestyle [1–5]. The majority of

the gut microbiome studies have determined microbial tax-

onomy and functional diversity using 16S rRNA marker gene-

based and/or whole-genome shotgun (WGS) approaches to un-

derstand the functional role of the gut microbiome. However,

novel insights on the complex interplay among diet, gut mi-

crobes, and human health, along with the role of key microbial

metabolites such as short chain fatty acids (SCFAs) and branched

chain amino acids (BCAAs), derived from the microbial fermen-

tation of dietary fibers, are beginning to emerge from recent gut

metabolomics studies [6, 7]. Moreover, the direct impact of mi-

crobialmetabolome on humanhealth is also becoming apparent

from the recent studies focusing on the “gut microbiome-host

metabolism axis” [8]. Therefore, an integrative approach using

both metagenome and metabolome-based characterizations of

the gut microbiome appears pragmatic for gaining deeper func-

tional and mechanistic insights into the role of gut microbes on

human health.

The large-scale studies carried out so far mainly represent

the gut microbiome of urban populations primarily from Eu-

rope, the United States, and other “WEIRD” countries (i.e., the

Western, Educated, Industrialized, Rich, and Democratic coun-

tries) [9, 10]. Only recently, some studies have characterized

the human microbiome from diverse ethnic populations and

found significant compositional variations compared to the mi-

crobiomes from other previously studied populations [11–14].

India is the seventh largest country in the world and harbors

the second largest population spread across multiple geograph-

ical locations with enormous diversity in ethnicity, lifestyles,

and dietary habits. India is home to the majority of the world’s

vegetarian population but also has an almost equal represen-

tation of its population consuming animal-based diets. The In-

dian population also has the highest prevalence of diabetes in

the world [15]. According to the World Health Organization esti-

mates (WHO, 2011), 53% of deaths in India in the year 2008 were

attributed to metabolic conditions such as diabetes and cardio-

vascular diseases, which are predicted to reach ∼75% by 2030

[16].

A few studies have investigated the gut microbiome of the

Indian population. A recent study by Maji et al. has shown the

functional association of human gut microbiome dysbiosis with

tuberculosis through a time-course study of six tuberculosis

patients in India [17]. However, other gut microbiome studies

were mainly limited by small cohort sizes and amplicon-based

(16S rRNA gene) sequencing and analysis [17–21]. Thus, several

large-scale efforts are needed to identify the Indian population-

specific microbiome biomarkers and to understand the impact

of the gut microbiome on health and disease in the Indian pop-

ulation along with global comparisons.

However, to uncover the enormous gut microbiome diver-

sity inherent in the different sub-populations of India, exten-

sive sampling and analyses are required. Therefore, as the first

large-scale study from India, we selected two prominent lo-

cations in North-Central India, i.e., LOC1: Bhopal city, Madhya

Pradesh, and Southern India, i.e., LOC2: Kerala. The two lo-

cations also had different dietary habits. The Southern-India

(LOC2) diet consisted of rice, meat, and fish, whereas the North-

Central (LOC1) diet consisted of carbohydrate-rich food includ-

ing plant-derived products, wheat, and trans-fat food (high-fat

dairy, sweets, and fried snacks). The Human Development Index

Report (UNDP; United Nations Development Programme), India

and SRS-based life-table (Sample Registration Survey, 2010–14)

has revealed that the citizens from Kerala had the highest life-

expectancy rates (>74 years) in India, whereas those in Madhya

Pradesh (capital city Bhopal) exhibited the lowest (<65 years)

[22]. Further, a higher predisposition of the North-Indian popu-

lation towards diabetes, cardiovascular diseases, and hyperten-

sion is also known, which in contrast is much lower in South-

ern India, perhaps due to the lifestyle differences in the two re-

gions [15, 23]. Thus, to gain deeper functional insights into the

microbiome from these two distinct sub-populations of India,

a multi-omics approach was carried out using amplicon-based

profiling of taxonomic composition (16S rRNA gene sequenc-

ing), WGS-based profiling of metagenome, and gas chromatog-

raphy/mass spectrometry (GC-MS)-based profiling of fecal and

serum metabolomic signatures.

Data Description

The two selected locations, Bhopal (LOC1) and Kerala (LOC2)

from North-Central and Southern parts of India, are about 2,000

kilometers apart and provided a distinct representation of the

Indian population with respect to diet and lifestyle (Additional

File 1). The 110 (62 females, 58 males) individuals recruited in

this study were not suffering from any disease, as reported by

personal medical history and physical examination, and con-

firmed no exposure to antibiotics for at least one month prior

to sampling. Recruited individuals had an average body mass

index (BMI) of 21.16 (±5.23 standard deviation), an average age

of 29.72 years (±17.41 standard deviation), and were not diag-

nosed with any disease at the time of sample collection, and

thus were considered as “healthy” (Additional File 1). Moreover,

they did not have a second-degree relative history of T2D. The

recruitment of volunteers, sample collection, and other study-

related procedures were carried out by following the guidelines

and protocols approved by the Institute Ethics Committee of

the Indian Institute of Science Education and Research (IISER),

Bhopal, India. The fecal samples were frozen within 30 minutes

of collection and were then used for 16S rRNA gene V3 hyper-

variable region amplicon sequencing, WGS-based metagenomic

sequencing, andmetabolomic analysis. Further, the serum sam-

ples collected from a subset of volunteers were used for GC-

MS-based metabolomics analysis. The sequencing of V3 hyper-

variable region of 16S rRNA gene and shotgun metagenome se-

quencing from the 110 fecal samples resulted in 54.87 million
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Dhakan et al. 3

paired-end reads (503,460± 175,547 [mean± standard deviation]

reads/sample) and 499.98 million paired-end reads (4,545,280 ±

1,498,663 [mean ± standard deviation] reads/sample), respec-

tively (Methods, Additional File 2 and Additional File 3). The

metabolomic analysiswas also performed on all fecal and subset

of serum samples collected from the same healthy participants

using GC-MS, and the resultant raw files were used for further

analysis. The data description of participants and the data gen-

erated from each sample are provided in Additional File 1 under

the Metadata information section.

Analyses

Construction of an Indian gut microbial gene catalogue

and updated integrated gene catalogue

The first step for functional analysis was the construction of an

extensive catalogue of gut microbial genes from the Indian pop-

ulation, which was not available previously. A De Bruijn graph-

based assembly of reads resulted in 2,165,507 contigs of length

≥500 bp with a total contig size of 3.086 Gbp representing 68.25%

of total reads and a mean N50 value of 2,288 bp. To obtain as-

semblies of low coverage genomic regions or genomes present

in the Indian gut microbiome, the reads from each sample were

mapped on assembled contigs obtained from their respective

sample, and the remaining singletons (unassembled reads) were

pooled and re-assembled together into an additional 45,839 con-

tigs with length ≥500 bp and a total assembled length of 34.68

Mbp. A total of 1,551,581 non-redundant genes were predicted

from contigs, which represent the gut microbial gene catalogue

of the Indian cohorts.

The integrated gene catalogue (IGC) established by Li et al. in

a previous multicohort study consisted of 9,879,896 genes iden-

tified from 1,267 gut metagenomes representing multiple pop-

ulations [24]. A total of 943,395 genes (sharing < 90% identity

with IGC) out of 1,551,581 from the Indian gut microbial gene

catalogue were identified as unique to the Indianmicrobial gene

catalogue. The IGC was updated to construct an “Updated-IGC”

by adding these 943,395 non-redundant genes from the Indian

gene catalogue. The updated-IGC consisting of 10,823,291 non-

redundant genes (an 8.8% increase from IGC) was used as the

reference gene catalogue for the subsequent analysis performed

in this study. A total of 70.74% (±3.77% standard deviation) map-

ping coverage of reads (∼7.5% increase in the mapping of reads)

was observed from the 110 Indian samples on the updated-IGC

as compared to 63% (±4.61% standard deviation) on IGC, show-

ing a significant (False Discovery Rate (FDR) adj. P value = 10−16;

Student t test) increase in mapping of Indian microbial dataset

(Fig. 1A and Additional File 4). The datasets from populations

in the United States (HMP), Denmark (MetaHIT), and China (a

study from Qin et al.) mentioned in Table 1 were used for a com-

parative analysis of the microbiome of the Indian population

with other populations [7, 10, 25]. The mapping of reads from

these three datasets (HMP, MetaHIT, and China) on updated-IGC

(meanmapping coverage: HMP= 67.74%,MetaHIT= 75.21%, and

China = 77.44%) did not show a significant (P values: HMP =

0.5, MetaHIT = 0.85, and China = 0.17; Student t test) increment

from their mapping coverage on IGC (mean mapping coverage:

HMP = 66.93%, MetaHIT = 75.02%, and China = 77.37%) as ob-

served in Fig. 1A. This shows that the addition of a subset of

non-redundant genes (sharing <90% identity with IGC) from the

Indian gut microbiome to the IGC significantly increased (FDR

adj. P value = 10−16; Student t test) the mapping percentage of

reads from the Indian microbiome dataset as compared to the

other datasets.

Identification of taxonomic signatures of Indian gut

microbiome

To determine the taxonomic and functional composition of

the Indian gut microbiome and to identify Indian-specific gut-

microbial signatures, a cross-population comparison was car-

ried out using the 16S rRNA gene hypervariable region and shot-

gunmetagenomic data from the other populations. A reference-

independent metagenome-wide association study (MGWAS)

was carried out to identify the Indian-specific gut metagenomic

markers through a comparison with similar large-scale studies

from other populations [26]. The genes from the metagenomic

samples of four countries (India, China, the United States, and

Denmark) were clustered (see Methods section) into 924 clus-

ters based on their co-occurrence and Pearson correlations (ρ ≥

0.9) across samples, resulting in 335metagenomic species (MGS)

having ≥700 genes in each cluster, and 589 co-abundance gene

groups (CAGs) consisting of ≥100 genes in each cluster. Out of

the 924 metagenomic clusters, 195 could be assigned up to the

species level using the taxonomic assignment strategy described

in theMethods section. Canberra distanceswere calculated from

MGS/CAG abundance profiles and their principal component

analysis (PCA) was carried out using “countries” as factors for

explaining the variance between samples, which showed that

the Indian population formed a distinct cluster from the other

populations in PCA (Fig. 1B). It is interesting to note that the

samples from the Indian cohort were more widely spread ow-

ing to the higher inter-sample Canberra distances between In-

dian samples (mean = 0.689) as compared to other datasets hav-

ing average inter-sample distances of 0.61, 0.59, and 0.54 for US,

China, and Denmark populations, respectively (Additional File

5: Supplementary Fig. S1). This could be attributed to the sig-

nificant (FDR adj. P value = 0.00013) differences in MGS abun-

dance profiles between LOC1 and LOC2 populations as revealed

on comparison of their principal coordinates (Additional File 5:

Supplementary Fig. S2).

Further, the identification of enriched MGS from P values

calculated using negative binomial (NB) model-based Wald test

(implemented in DESeq2) and log odds ratio showed that the

species belonging to the genera Bacteroides, Alistipes, Clostridium,

and Ruminococcuswere depleted in the Indian population (China,

Denmark, and United States; log odds ratio < −2 and adj. P

value < 0.01), whereas the MGS/CAGs annotated as Prevotella,

Mitsuokella, Dialister, Megasphaera, and Lactobacillus were found

to be associated with the Indian population (adj. P value < 0.01;

log odds ratio > 2) and were the major drivers for separation of

Indian samples from other populations (Additional File 5: Sup-

plementary Fig. S3; Additional File 6). Furthermore, the distri-

bution of microbial families across 10 different populations was

also calculated using 16S rRNA gene markers, which revealed

the Indian gutmicrobiome to have the highest abundance of Pre-

votellaceae (Fig. 1C). The feature selectionmethod applied using

random forest along with pairwise Wilcoxon rank-sum test also

identified Prevotellaceae to be significantly higher (FDR adj. P <

0.05) in gut microbiome of Indian cohort compared to the other

population datasets except Indonesia (P value = 0.506) (Addi-

tional File 5; Supplementary Figs. S4, S5, and S6) where a compa-

rable abundance of Prevotellaceae was present. The high abun-

dance of Prevotellaceae in the Indian population underscores its

importance as the marker taxa for the Indian cohort.
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4 Indian gut microbiome

Figure 1: Comparison of the Indian gut microbiome with other major populations using 16S rRNA gene and metagenomic datasets. (A) Percentage of total reads

that could be mapped to IGC and updated IGC containing the Indian gene catalogue. Plotted are interquartile ranges (IQR; in boxes), median (as dark lines in the

boxes), lowest and highest values within 1.5 times the IQR (shown as whiskers extending from boxes), and outliers as points beyond these whiskers. The blue and

red boxes show percentage of reads mapped to IGC and updated IGC (containing the Indian microbial genes). (B) Principal component analysis using metagenomic

species (MGS)/co-abundance gene group (CAG) proportion derived from ametagenome-wide association study. Variations across populations are shown using PC1 and

PC2. (C) Illustration of proportions of bacterial families in different populations and their composition as determined from 16S rRNA gene datasets (adult population

only). The mean family compositions of abundant families (≥1%) are represented in separate pie plots from 10 different country-wise datasets, showing their overall

microbial composition compared to Indian population.

Table 1: Metagenomic datasets used for comparative analysis (meta-analysis) of the microbiome and a metagenome-wide association study

Dataset No. of samples Sequence data (GB) No. of genes

INDIA 110 110 4,809,378

USA 74 441 6,521,885

DENMARK 85 103.87 7,141,214

CHINA 71 180.78 5,464,702
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Microbial functions enriched in the Indian population

Functional comparison of Indian microbiome with other popu-

lations was carried out by mapping the genes derived from as-

sembled contigs to the EggNOG database. In total 69,386 EggNOG

functions were identified from the Indian gut microbiome, in-

cluding 2,328 novel functions obtained from clustering the un-

mapped genes (see Methods section). The core microbial func-

tions that are essential for microbial survival and present in

almost 80% individuals were used for the functional compar-

ison. The core microbiome was derived using a similar strat-

egy as employed in MetaHIT (see Methods section) [25]. A set

of 1,890 essential genes from six bacterial species, namely, Es-

cherichia coli MG1655I and MG165II, Bacteroides thetaiotaomicron

VPI-5482, Pseudomonas PA01, Salmonella enteric serovar Typhi, and

Staphylococcus aureus NCTC 8325, were obtained and were as-

signed with eggNOG annotations. The eggNOG abundance pro-

file generated from relative abundances of genes observed in In-

dian and other population datasets were ranked based on their

mean abundance in descending order. The range of eggNOGs

that included 85% of the 1,890 essential genes were considered

as a part of the core microbial eggNOG set for each popula-

tion dataset and was used for the analysis. Most of the essen-

tial genes were included in the top-ranking clusters, suggesting

that the essential genes are present in higher abundance than

the accessory function genes (Additional File 5: Supplementary

Fig. S7).

The core microbiome of Indian samples was compared

with the core microbiome of US, China, and Denmark popula-

tions. The proportion of essential genes covered by top-ranking

eggNOG clusters showed that 85% of the essential genes could

be covered in the least number (15,300) of eggNOGs in the case of

Indian population, whereas it was covered by a higher number

of eggNOGs in the case of US (20,400), China (19,900), and Den-

mark (30,900) populations (Additional File 5: Supplementary Fig.

S8). These observations suggest that the core functional micro-

biome of Indian population is less diverse than the other pop-

ulations. This corroborates well with the alpha diversity (mean

Shannon index) calculated using gene abundance tables rarefied

at 1,000,000 seqs/sample (for n = 30 random iterations), which

also showed that the Indian microbiome is significantly (P value

< 10−16) less diverse than the microbiome of the other popula-

tions analyzed in this study (Additional File 5: Supplementary

Fig. S9).

In total, 5,588 eggNOGs were characterized as core functions

commonly present in the coremicrobiome of all the four popula-

tion datasets. The co-inertia (Procrustes) analysis and the eigen-

values calculated from PCA using both core and accessory func-

tions also showed that the Indian gut microbiome was signifi-

cantly (FDR adj. P value = 6.4 × 10−10, 2 × 10−16 and 0.05 with

China, Denmark, and United States, respectively, for PC1) differ-

ent from the other datasets (Fig. 2A and 2B). These results also

show the uniqueness of Indian gut microbial functions in com-

position and diversity at both core and accessory levels. The In-

dian gutmicrobiomewas found to be enriched (FDR adj. P< 0.05,

log odds ratio >1.5) in functions for carbohydrate and energy

metabolism, including degradation of complex polysaccharides

and glycogen, and was also enriched for enzymes from the TCA

cycle, which corroborates well with the carbohydrate-rich diet

of the Indian population (Fig. 2C and 2D and Additional File 7:

enriched KO and EggNOG functions).

Unsupervised clustering of Indian samples and their

association with previously identified

enterotypes

Arumugam et al. classified the samples from multiple popu-

lations into clusters based on genus-level profiles and iden-

tified three prominent clusters called enterotypes [2]. In or-

der to identify the enterotypes from Indian gut microbiome,

a meta-analysis was performed using genus-level abundances

of samples from the four nations as used by Arumugam et al.

along with the Indian cohort. There were three prominent clus-

ters observed with the majority (63.6%) of Indian population

falling into enterotype-2, which was primarily driven by Pre-

votella. The analysis revealed differences in the distribution of

samples from LOC1 and LOC2, where a higher number of sam-

ples from LOC1 (73.5%) was associated with enterotype-2 com-

pared to LOC2 (54%). In contrast, LOC2 samples were associated

with enterotype-1 (30.3%) and enterotype-3 (16.07%), whichwere

driven by Bacteroides and Ruminococcus, respectively (Fig. 3A; Ad-

ditional File 8).

An independent microbial abundance-based clustering of

Indian samples using Jensen Shannon distances revealed two

prominent clusters. The clustering was validated using the

Calinski Harabasz index (CHI) and prediction strength, which

uses a cross-validation approach to validate the robustness of

clustering (Additional File 9). Cluster 1 was primarily enriched

in species from genus Prevotella (P < 10−10), and Cluster 2 was

quite widely spread and was enriched in species belonging to

Bifidobacterium (P = 10−13), Ruminococcus (P = 0.031), Clostridium (P

= 0.04), and Faecalibacterium (P = 0.046) (Additional File 5: Sup-

plementary Fig. S10, Additional File 10). The higher abundances

of Prevotella in LOC1 and Bacteroides in LOC2 in India are per-

haps due to the different dietary habits at the two locations.

The LOC1 population was mainly consuming a carbohydrate-

rich diet comprising vegetable-based foods and grains, whereas

the LOC2 population was consuming a diet consisting of rice,

meat, and fish. Similar variations inmicrobiome diversity due to

differences in dietary habits have also been observed in earlier

studies [27, 28]. However, to confirm the above observations and

to assess the quantitative effect of dietary habits on microbial

variations, further longitudinal studies are necessary where de-

tailed dietary information needs to be collected through a food-

frequency questionnaire.

A similar cluster analysis performed using functional infor-

mation derived from the abundance of Kyoto Encyclopedia of

Genes andGenomes (KEGG)Orthologs (KO) also showed the clus-

tering of samples into two distinct clusters, namely, C1 and C2

(Additional File 5: Supplementary Fig. S11). In comparison to

clusters derived from taxonomic information, only 14 out of 110

samples were placed in different clusters using the functional

information showing a similarity (P value = 0.6841; Fisher ex-

act test; Additional File 11) in cluster allocation using both tax-

onomic and functional information. C1 was found enriched in

genes coding for enzymes such as β- glucosidase (Log Odds Ra-

tio (LOR) = 3.364; P value = 10−20), and α-fucosidase (LOR =

0.73; P = 10−8), which are involved in the breakdown of plant-

polysaccharides, whereas the genes coding for enzymes such as

lipase (LOR = −1.34; P = 10−12), carnitine-coA dehydratase (LOR

= −1.81; P value = 0.029), and amino peptidase (LOR = −2.72; P =

10−10), which are involved in themetabolism of an animal-based

diet, were enriched in C2 (FDR adj. P < 0.05) (Additional File 12).
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6 Indian gut microbiome

Figure 2: Functional variations and differences between Indian populations and other populations determined from core and accessory microbial functions. (A)

Procrustes analysis was performed on Bray Curtis distances calculated from core EggNOG and accessory EggNOG abundance tables in all populations. PCA analysis

shows the concordance of core and accessory functions in India, Denmark, US, and China populations. The red and black lines are associated with core and accessory

datasets, respectively. (B) Eigenvalues calculated from PCA of samples using core EggNOGs and accessory EggNOGs are plotted. The box plots showing for core and

accessory eigenvalues for all samples in different populations are shown. Each box plot represents the median shown as white line between the boxes, the upper

and lower ends of the boxes representing upper quartile (75th percentile) and lower quartile (25th percentile). The whiskers extending on both ends represent 2.5∗

interquartile range. The different colored dots overlaid for each sample are plotted over the box. The enrichment or depletion of (C) Eggnog and (D) Kegg functions

in India compared to other populations are shown as volcano plots. The log-transformed FDR adj. P values calculated from negative binomial-based Wald test from

DESeq2 are plotted on the x-axis. The log odds ratio calculated for India vs Other datasets are plotted on the y-axis. The EggNOGs/KOs with P value < 0.05 are shown in

blue whereas those having P values>0.05 are shown in red. The EggNOGs/KOs extending on the right and left side and with P value>0.05 are labeled as highly enriched

in India and other datasets, respectively.

To identify the covariates explaining the maximum varia-

tions in microbial profiles across samples, unweighted UniFrac

distanceswere calculated using phylogenetic distances between

operational taxonomic unit (OTU) reference sequences and an

OTU table rarefied at 100,000 seqs/sample. The principal compo-

nent analysis of UniFrac distances and the correlation of load-

ings for each samplewith the covariates using polyserial/biserial

correlation identified distinct locations (LOC1 and LOC2) and

diet (vegetarian and omnivorous) to be the major covariates ex-

plaining the variation in taxonomic diversity between the sam-

ples (Additional File 5: Supplementary Fig. S12, Additional File

13). An ordination of 110 Indian samples using gene abundance

profiles from metagenomic data showed location and diet to be

significantly (FDR adj. P value < 0.01; polyserial correlation) as-

sociated with PC1, explaining the maximum variation between

samples (Additional File 5: Supplementary Fig. S13, Additional

File 13). A significant correlation (ρ = 0.708; P value = 2 × 10−16

Spearman rank correlation) was also observed between location

and diet covariates. A comparison of functional diversity using

gene abundance curves with increasing number of samples per-

formed between the two locations showed that the microbiome

profiles of LOC2 populations were more diverse in their compo-

sition compared to LOC1 populations (Additional File 5: Supple-

mentary Fig. S14). The inter-individual Bray-Curtis distances cal-

culated on normalized gene abundance profiles between LOC1

and LOC2 populations also showed significant differences (FDR

adj. P < 0.05), where LOC2 population displayed higher inter-

individual heterogeneity in theirmicrobial community structure

as compared to LOC1 population (Additional File5: Supplemen-

tary Fig. S15).

Major differences in the microbiome profiles were apparent

at the Phylum level (using 16S rRNA gene amplicon sequencing)

from the higher Bacteroidetes to Firmicutes ratio (P = 0.002) in

LOC1 (1.93) compared to LOC2 (0.86), which have been previously

reported as a result of differences in dietary habits, i.e., vegetar-

ian or plant-based (carbohydrate-rich) vs omnivore or animal-

based (protein-rich) diets (Additional File 5: Supplementary Fig.

S16) [29, 30]. Notably, these variations were not attributable to

BMI (Spearman rank correlation, FDR adj. P = 0.78). Taxonomic

profiles generated from metagenomic datasets through reads

mapped to reference genomes were compared between the two

locations at genus and species levels using NB model-based

Wald test implemented in DESeq2. Prevotella and Megasphaera

were observed to be higher in LOC1, whereas Ruminococcus and

Faecalibacteriumwere higher in LOC2 (FDR adj. P < 0.05,Wilcoxon

rank-sum test) (Fig. 3B). Within these genera, P. copri and P. ster-

corea species were significantly higher in LOC1, whereas F. praus-

nitzii and R. bromii belonging to genus Faecalibacterium and Ru-

minococcus, respectively, were higher in LOC2. In addition, Akker-

mansia muciniphila, Eubacterium siraeum, and Roseburia hominis

were observed to be higher in LOC2, andM. funiformis andM. hy-

permegale from genus Megamonas were higher in LOC1 (Fig. 3C).
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Dhakan et al. 7

Figure 3: Variations in gut microbiome at the two locations. (A) Between-class analysis, which visualizes results from PCA and clustering, using genus-level abundance

from 37 cross-national datasets and genus abundance of 110 Indian samples obtained from mapping of reads to reference genomes. The samples from LOC1 (cyan),

LOC2 (pink), and 37 cross-national samples from Arumugam et al. (gray and labeled) are placed into three distinct enterotypes based on clustering. (B) Significantly

different genera (FDR adj. P value < 0.05; NB model-based Wald test) between the two locations are shown as box plots with boxes representing interquartile range,

dark lines between the boxes representing median values, and whiskers representing the 1.5 x IQR on each side. (C) Scatterplot of log-transformed mean values of

species abundance in LOC1 (n = 53) and LOC2 (n = 57) individuals. Red color gradient points represent differentially abundant (FDR adj. P < 0.05; NBmodel-basedWald

test) species with lower P values from red to blue.

Moreover, the metagenomic species derived from clustering of

gene profiles showed that MGS/CAGs were enriched in LOC1 (log

odds ratio >2; adj. P < 0.05), of which seven MGS/CAGs were an-

notated to Prevotella copri. Similarly, 67 MGS/CAGs were found

enriched in LOC2 (adj. P < 0.05; log odds ratio < −2) and included

8 and 3 MGS/CAGs annotated to SCFA-producing species Fae-

calibacterium prausnitzii and Roseburia inulinivorans, respectively

(Additional File 14). Interestingly, both, F. prausnitzii and R. inulin-

ivorans species enriched in LOC2 are known SCFA producers and

are regarded as commensals with anti-inflammatory properties

[31]. In contrast, Prevotella, which was abundant in the LOC1, is

known to be associated with a fiber-rich diet [32].

Defining the Indian gut metabolome

The analysis of microbial community structure and func-

tions from the two locations having different lifestyle and

diet revealed significant insights. Previous studies have shown

a direct role of diet in shaping the different gut micro-

biomes [33]. Thus, to gain deeper insights into the metabolic
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8 Indian gut microbiome

Figure 4: Between-class analysis to identifymetabotypes and their associatedmetabolites. (A)Metabolite clusters (MES) abundance profiles of samples were generated,

and their clustering was performed using PAM (partitioning around medoids) clustering. The between-class and PCA of JSD distances and PAM clustering identified

three clusters to be optimum for their segregation using (B) Silhouette index. The metabolites valeric acids and saturated fatty acids such as palmitic acid and stearic

acid were found to be higher in Cluster1. The carbohydrates such as glucose and galactose were found to be higher in Cluster 2. The BCAAs, lauric acid, and butyric

acid were found to be higher in Cluster 3. (C) OPLS-DA analysis using locations as classes shows locations as differentiating factors in separating the samples based

on their metabolomic profiles.

Table 2: PERMANOVA to assess the effect of covariates on metabolomics profiles of samples

Variable Sum of Sq Mean Sq F-Model R2 P value

Location 0.05841 0.058406 4.9423 0.04455 0.0009

Diet 0.04701 0.04701 4.2132 0.03586 0.0009

Age 0.01618 0.01618 1.4505 0.0123 0.161

Gender 0.00488 0.00488 0.4370 0.00373 0.927

Table 3: OPLS-DA model and its validation for different covariates as class of separation

Variable R2X Q2 (cumulative) pR2 pQ2

Location 0.165 0.205 0.005∗∗∗ 0.005∗∗∗

Diet 0.168 0.123 0.005∗∗∗ 0.005∗∗∗

Age 0.155 −0.00067 0.075 0.065

Gender 0.106 −0.247 0.145 0.96

Cluster (genus

based)

0.16 0.15 0.005∗∗∗ 0.005∗∗∗

pR2 and pQ2 show P values for validation of OPLS-DA model with P value <0.01 shown as significant (∗).

activity of microbiomes from LOC1 and LOC2 as driven by differ-

ent diets, fecal metabolites were analyzed using a GC-MS-based

metabolomics approach. An unsupervised between-class anal-

ysis of metabolomic profiles separated the samples into three

separate clusters, and the robustness was confirmed using pre-

diction strength and Silhouette index (Fig. 4A and 4B). Polyse-

rial correlation of covariates showed location to be the major

factor explaining the variation at PC1 (FDR adj. P < 0.01) sepa-

rating Cluster 1 from Clusters 2 and 3. In contrast, vegetarian

and omnivorous diet groups emerged as other factors explain-

ing the variation at PC2 (FDR adj. P< 0.01) and separating Cluster

2 from Cluster 3 (Additional File 15). The covariates’ location and
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Dhakan et al. 9

dietwere also observed to be highly correlated variables showing

their strong influence on gut microbiome. Cluster 1 was associ-

ated with LOC1 and showed higher concentration of saturated

fatty acids including palmitic acid, stearic acid, and valeric acid.

Cluster 3 was associated with LOC2 and showed higher abun-

dances of BCAAs, valine, leucine, and isoleucine, and SCFAs, pro-

pionate, and butyrate concentrations. Cluster 2 was enriched in

D-glucose, galactose, mannose, lauric acid, and cadaverine (a

polyamine associated withmeat consumption) andwas also ob-

served to be associated with LOC2 [34]. To assess the effect of

different covariates on the separation of samples, PERMANOVA

was performed (Table 2). The locationwas found to explainmax-

imum variation for separation of samples, whereas diet was the

second most important variable in explaining the variance. The

Orthogonal Projections to Latent Structures Discriminant Analy-

sis (OPLS-DA) model was used to expose the class separation for

each of the covariates using Q2 values that assessed the quality

measurement (Table 3). The OPLS-DA models validated by ran-

dom permutation (n = 200) of class labels showed Q2 values for

location and diet to be higher than Q2 values produced from ran-

dom permutations with location showing highest Q2 values (Ad-

ditional File 5: Supplementary Fig. S17). The OPLS-DAmodel also

showed clear separation of samples between locations as class

of separation (Fig. 4C).

Positive correlation of BCAA transporters with BCAA

levels in fecal metabolome

We also identified themarkermetabolites, which showed signif-

icant (Spearman correlation, FDR adj. P < 0.05) associations with

LOC1 or LOC2. In total, 17 metabolite clusters were identified, of

which 9 were associated with LOC1 and 8 were associated with

LOC2 (Additional File 16). These marker metabolites showed a

positive association with MGS/CAGs. For instance, Prevotella an-

notated clusters correlated significantly with valeric acid and

sedoheptulosemetabolitemarkers, which showed a higher rela-

tive abundance in LOC1. In contrast, MGS/CAGs belonging to Fae-

calibacterium, Clostridium, Ruminococcus, and Alistipes were posi-

tively associated with BCAAs, cadaverine, propanoate, and lau-

ric acid in LOC2 (Fig. 5A). In addition to the positive association

of BCAAs with species enriched in LOC2, a correlation analysis

of significantly different (FDR adj. P < 0.05, DESeq2-based Wald

test; Additional File 17) functional modules revealed that fecal

BCAA abundances were positively correlated with BCAA trans-

porter abundance in LOC2. In contrast, BCAA abundance in the

fecal metabolome showed a negative correlation (P < 0.05) with

BCAA biosynthesis pathways (Fig. 5B).

The above observations are significant given that BCAAs are

important metabolites involved in glucose homeostasis by stim-

ulating insulin secretion [35]. Higher BCAA levels in the fe-

cal samples could be a result of its uptake by microbes via

BCAA transporters, leading to their accumulation in the micro-

bial cells detected in fecal metabolome. This is concordant with

higher relative abundance of Bacteroides vulgatus and Eubacterium

sireaeum in LOC2 compared to LOC1, which are known to harbor

higher abundance of BCAA transporters (Fig. 3C) [8]. Further sup-

port for this hypothesis emerged from the correlation of circu-

lating BCAA levels (valine and isoleucine) in serumwith the cor-

responding concentrations in feces. Interestingly, serum BCAA

concentrations were significantly higher in LOC1 individuals as

compared to LOC2 individuals, which is in contrast with their

BCAA levels in the fecal metabolome (Fig. 6A). Thus, one possi-

bility is that the accumulation of BCAA in the feces of individuals

of LOC2 was mediated by the inward transport of BCAA by the

gut bacteria. In contrast, the lower BCAA accumulation in gut

microbes and a higher BCAA biosynthesis by microbial species

and its eventual absorption in serum appears to be a plausible

reason for the higher BCAA concentrations in serum of LOC1

populations.

Role of Prevotella copri in the regulation of BCAA levels

To explore the differences in association of functional pathway

modules between the two locations, KOs within each module

were correlated with KOs from other modules using Spearman

correlation coefficient. The KOs showing significant differences

in correlations between LOC1 and LOC2 were identified. This

differential correlation analysis of BCAA biosynthetic modules

with other pathways in LOC1 and LOC2 revealed that BCAAmod-

ules were independently driven in LOC1 and LOC2 (Spearman

rank correlation, FDR adj. P < 0.01) (Additional File 5: Supple-

mentary Fig. S18A and S18B). To identify the species and the

metabolic pathways that contributed most to the BCAA abun-

dance in fecal and serum metabolome profiles, a correlation

analysis with iterations leaving each species out was performed

for each metabolic module (Fig. 6B). The species whose removal

leads to amaximumchange in the correlation ofmetabolic path-

way with metabolite was identified and was considered as an

important contributor of that metabolite.

Notably, the BCAA biosynthesis-dependent changes in

BCAA levels were largely driven by Prevotella species through

threonine-dependent and -independent biosynthesis pathways

as observed from Delta SCCbg values when genes from this

species were removed (see Methods section). The correla-

tion network analysis with differential MGS/CAGs revealed

threonine-independent isoleucine biosynthesis pathway to be

highly correlated with Prevotella copri in LOC1 (Fig. 6C). The

first enzyme, D-citramalate synthase, catalyzing the first step

of threonine-independent isoleucine biosynthesis pathway was

also observed as highly enriched (LOR = 1.7) in LOC1 [36]. Fur-

ther, BCAA biosynthesis pathways were found to be higher in

LOC1, whereas BCAA transporters were higher in LOC2 (Fig. 6D),

leading to the dynamic changes in BCAA concentrations in fecal

and serum metabolome in LOC1 and LOC2 as observed in Fig.

6A.

Discussion

Compositional and functional human gut microbiome studies

in different populations have been instrumental in establishing

the role of gut microbiome in human health [2, 28, 37, 38]. How-

ever, such population-specific signatures and their functional

roles are yet unknown for the Indian gutmicrobiome. This study

provides the first insights into the Indian gut microbiome repre-

sented through a cohort of 110 individuals from two prominent

locations to reveal the taxonomic and functional diversity using

16S rRNA gene, metagenomic analysis, and metabolomic pro-

filing. Although the sequencing depth was modest (1.36 ± 0.5

Gbp per sample, mean ± standard deviation), the inclusion of

110 individuals from two distinct geographic locations as well

as the identification of Indian gut microbiome-specific genes

provide a first insight into the Indian gut microbiome and are

thus considered important additions to the field. The selection

of two distinct sub-populations (Bhopal-LOC1 and Kerala-LOC2)

was an important consideration to capture the microbiome

variations resulting from different diets and lifestyles of these

two cohorts. LOC1 provided a representation of the population

fromNorth-Central Indiamainly consuming a carbohydrate and
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10 Indian gut microbiome

Figure 5: Spearman rank correlations of metabolites with species and metabolic modules. (A) Spearman rank correlation coefficients were calculated between sig-

nificantly different metagenomic species and significantly different metabolites between LOC1 and LOC2 populations. The correlations showing significant FDR adj.

P < 0.05 are plotted. The bars on the right show the log odds ratio of the abundance of MGS, with positive values indicating enrichment in LOC1 and the negative

values indicating enrichment in LOC2. (B) Spearman rank correlations between significantly different (FDR adj. P < 0.05, NB model-based Wald test) pathway modules

and significantly different metabolite abundances in all samples. The significant (P < 0.05) correlations are plotted, and the color intensities depict the correlation

coefficients. The correlation of metabolites with locations is shownwith labels in dark red colors showing association with LOC, and the labels in green colors showing

correlation with LOC1.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ig

a
s
c
ie

n
c
e
/a

rtic
le

/8
/3

/g
iz

0
0
4
/5

3
0
4
3
6
7
 b

y
 g

u
e
s
t o

n
 0

5
 F

e
b
ru

a
ry

 2
0
2
1



Dhakan et al. 11

Figure 6: BCAA abundance and their differential correlation with LOC1 and LOC2. (A) Bar plot showing z-normalized values of serum and fecal BCAA (valine and

isoleucine) relative concentration in LOC1 and LOC2. (B) The effect of specific microbial species on associations between BCAA biosynthesis pathways and BCAA levels

in fecal metabolome, illustrated by change in background adjusted Spearman correlation coefficient when a given species has been excluded from analysis, is shown

(see Methods). The density plot shows the distribution of correlation for species and the changes caused by specific species as marked by lines below. (C) Network

analysis of Spearman correlations between the branched chain amino acids biosynthesis, degradation, and transport KEGGmodules withMGS abundance in both LOC1

and LOC2 populations. The node size is proportional to the degree of interactions, and the links betweenmodule andMGS show interactions or significant correlations

(FDR adj. P < 0.05) with negative (in red) and positive (in blue) correlation coefficients. (D) Plot showing relative abundance of KOs associated with different modules

of BCAA biosynthesis and transporters in LOC1 and LOC2.

fat-rich diet, whereas LOC2 represented a population from

Southern India consuming an omnivorous diet with rice and

animal-based products as the primary components.

This study established the gene catalogue of the Indian gut

microbiome, which provides the first insights into the yet un-

known functional gut microbiome of the Indian population. The

genes encoding several transposons, peptidase, glucosidase, and

plant polysaccharide degradation enzymes were unique to the

Indian population and not represented in other microbiome

datasets. The Updated-IGC (IGC+India) constructed by the ad-

dition of unique non-redundant genes from the Indian popula-

tion to the Integrated gene catalogue is likely to act as a refer-

ence dataset for gut microbiome studies for global comparative

studies and particularly for studies involving South-Asian pop-

ulations that have similar dietary habits and lifestyle.

In addition to the basic housekeeping functions of the gut

microbiome, which were also found abundant in other datasets,

the Indian gut microbiome was enriched in functions for carbo-

hydrate and energy metabolism including degradation of com-

plex polysaccharides, which corroborates well with the typical

carbohydrate-rich diet of the Indian population [39]. The distant

clustering of Indian samples from other populations revealed

the unique composition of the Indian gut microbiota (Fig. 1B).

Prevotella emerged as the most discriminatory genus associated

with the Indian population as revealed by both amplicon and

MGWAS. The abundance of Prevotella was also indicated in the
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12 Indian gut microbiome

previous 16S rRNA gene-basedmicrobiome studies of the Indian

population carried out in small to medium-sized cohorts [18,

19]. Recently, Prevotellahas been commonly observed in different

non-Western communities that consume a plant-rich diet, such

as in the Papua NewGuineans, native Africans, rural Malawians,

and BaAka pygmies [11, 40] and has also been associated with

vegetarianism in the Western populations [41, 42]. However, it

has not been observed at such high abundance in the Western

countries so far. The MGWAS approach in this study showed

the presence ofMegasphaera, Lactobacillus, andMitsuokella as the

other major genera associated with the Indian gut microbiome.

Several recent studies have shown a relationship between

the abundance of specific strains of Prevotella with inflamma-

tory diseases, since it has a higher intrinsic capacity to stim-

ulate Th17-mediated inflammation, which is generally not ex-

pected in a strict commensal bacterium [41, 43, 44]. However,

the high abundance of Prevotella in the healthy gut microbiome

of the Indian population does not corroborate with its potential

inflammatory role reported so far. Since this study was only fo-

cused on the gutmicrobiome of healthy individuals, it is difficult

to draw conclusions on the potential inflammatory role of this

species. One potential explanation could be the complex set of

interactions between host genetic risk factors and environment

in which the presence of Prevotellamay be only one of the factors

[45]. Further, strain-level variations are known in the inflamma-

tory responses and not all species of Prevotella could be poten-

tially inflammatory, as also evident from the knownhigh genetic

diversity within and between the species of Prevotella [43]. Thus,

the high abundance of Prevotella in the healthy microbiota em-

phasizes the requirement for larger cohort studies in different

populations to gain deeper insights into the potential inflam-

matory roles of gut microbes.

The abundance of Prevotella has been associated with plant-

based diets, and the typical carbohydrate-rich diet of the In-

dian population could be one of the reasons for the over-

representation of this genus in the Indian gut microbiome [46].

Likewise, the predominance of other microbial species from

genus Lactobacillus, Megasphaera, and Mitsuokella could be due to

the higher intake of fermented food and dairy products along

with the carbohydrate-rich diet in LOC1 [46, 47]. Similarly, Bac-

teroides and Clostridium, which were abundant in LOC2, are as-

sociated with diets rich in animal-based products, consistent

with the omnivorous diet of LOC2 [42]. Interestingly, taxonomy-

based clusters 1 and 2 showed associations with the two lo-

cations LOC1 and LOC2 and also with the two KO-based clus-

ters (C1 and C2) (Additional File 5: Supplementary Figs. S10 and

S11). It is to be noted that C1 was enriched in enzymes involved

in the degradation of carbohydrate and plant polysaccharides,

which correlates well with the carbohydrate-rich diet in LOC1.

In contrast, C2 was enriched in enzymes involved in lipid and

protein degradation, which relate to the constituents of an om-

nivorous diet in LOC2. These observations further support the

correlations between location, diet and enterotype. Although,

the concept of enterotype classification is sometimes criticized

due to statistical weakness in some studies, a meta-analysis of

Indian samples with samples from Arumugam et al. revealed

three robust clusters, with Indian samples mostly associated

with enterotype-2 driven by Prevotella [2]. This classification of

samples from multiple population/studies into enterotypes has

the potential to be clinically relevant in various aspects such as

disease diagnosis, early detection of disease, biomarker devel-

opment, personalized treatments, and xenobiotic metabolism

[48]. It is a representation of the major microbial species in the

gut microbiome and thus appears useful for microbiome-based

population stratification. A robust statistical analysis with in-

creased sample sizes, direct clinical associations, and detailed

molecular interventions are essential for further strengthening

its potential.

The study also established the previously unknown fecal

metabolome of the Indian population, which showed strong

clustering into three metabolomic clusters differentiated by lo-

cation and diet. The metabolomic clusters also correlated well

with the respective dietary habits of the two locations, where

metabolomic Cluster 1 showed an association with LOC1 and

was enriched in saturated fatty acids such as palmitic acid and

stearic acid, whereas metabolomic Cluster 3 showed an associ-

ation with LOC2 and was enriched in BCAAs such as isoleucine,

valine, and leucine and in SCFAs such as propionic acid and bu-

tyric acid. Amediumchain fatty acid “lauric acid”was also found

abundant in LOC2 perhaps due to the high dietary consump-

tion of coconut oil in this location [49, 50]. Lauric acid has been

reported to be beneficial by preventing fat deposition in blood

vessels and acting as an anti-inflammatory and anti-oxidative

agent [51].

The major BCAA “isoleucine” being produced through a

less common threonine-independent pathway for isoleucine

biosynthesis, and the higher enrichment of the key enzyme, D-

citramalate synthase of the above pathway confirmed its higher

abundance in LOC1 as compared to LOC2. Further, this pathway

was found to be associated with a single species, Prevotella co-

pri, as reported earlier [8]. Taken together, it appears that the

higher abundance of BCAAbiosynthesis genes and a lower abun-

dance of BCAA inward transporters in gut microbiome resulted

in the lower BCAA accumulation in the fecal metabolome and

higher BCAA concentration in serum as observed in LOC1 (Fig.

7) [8]. However, a contrasting pattern was observed in the case of

LOC2, where the lower abundance of BCAA biosynthesis genes

and the higher abundance of BCAA inward transporters corre-

lated well with the higher and lower BCAA concentrations in fe-

ces and serum, respectively.

The higher levels of SCFAs in LOC2 could be a consequence

of the consumption of an omnivorous diet, which is associated

with a Firmicutes-rich gut microbiome [52]. SCFAs have well-

established roles in human health as an energy source, an anti-

inflammatory agent, and for improving intestinal homeostasis

by increasing IL-18 production [53]. In contrast, higher serum

BCAA levels have well-known roles in promoting insulin resis-

tance and type-2 diabetes (T2D) and were found to be higher

in the serum in LOC1. Several reports on the role of a high-fat

diet in the modulation of microbiota and alteration in intesti-

nal barrier are emerging, with results showing increased ab-

sorption and circulating levels of BCAA and reduction of SC-

FAs such as butyrate, acetate, propionate, and secondary bile

acids, as also noted in the case of LOC1 [54, 55]. High-fat and

carbohydrate-rich diets have also been associated with an in-

crease in abundance of Bacteroidetes (gram-negative bacteria)

leading to a skewed Bacteroidetes:Firmicutes ratio towards the

former phylum [32]. Such a ratio was also apparent in this study

in LOC1 dominated by Prevotella from the phylum Bacteroidetes.

Further, higher serum concentrations of circulating BCAA were

also observed in LOC1. These results provide hints on the role

of dietary habits in shaping the gut microbiome and its plausi-

ble impact on the BCAA and SCFA dynamics observed in these

populations.

To conclude, this multi-omics-based gut microbiome study

of a healthy cohort from two different parts of India provides

novel insights into the Indian gut microbiome and metabolome

and reveals the unique gene catalogue from the poorly
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Figure 7: BCAA transporters playing a key role in maintaining the levels of BCAAs in feces and serum. The dynamics of BCAA concentration levels in fecal and serum

metabolome influenced by microbial BCAA biosynthesis and transport pathways and their differential abundance in LOC1 and LOC2 is shown.

characterized Indian population. Further studies using higher

sequencing depths and including both healthy and diseased in-

dividuals will help in obtaining more comprehensive functional

and taxonomic information of gut microbiome from Indian pop-

ulation and its impact on human health.

Methods

Study design and subject enrollment

The study cohort consisted of 110 healthy individuals belong-

ing to different age groups from infants (<1 year) to aged (>50

years), with an average subject age of 29.72 ± 17.4 years (mean

± standard deviation) from two different locations across India,

i.e., Bhopal (LOC1, n = 53) and Kerala (LOC2, n = 57), which are

separated by ∼1000 miles. LOC1 is located in North-Central In-

dia with the majority of population being vegetarian, whereas

LOC2 is located in Southern India where the population’s dietary

habits mostly consist of rice, seafood, and redmeat (see Diet de-

scription section in Additional File 1). According to the Indian

Food Composition Table, the primary Indian diet is rich in carbo-

hydrates such as rice, wheat, and potato and in fat and proteins

from milk and dairy products [56]. In addition, several accom-

paniments to the primary diet also exist, including a variety of

grains, vegetables, fruits, and usage of oil, spices, and animal

products.

The fecal samples for metagenomics and blood samples for

serum metabolomics were collected from healthy participants,

and their metadata is provided in Additional File 1 under the

Metadata information section. The recruitment of volunteers,

sample collection, and other study-related procedures were car-

ried out by following the guidelines and protocols approved by

the Institute Ethics Committee of the IISER, Bhopal, India. Each

fecal sample was frozen within 30 minutes of collection. Writ-

ten informed consent was obtained from all subjects prior to

any study-related procedures, along with information on gen-

der, age, and diet for a period of one month prior to the collec-

tion of fecal samples. The recruited individuals did not receive

any medication at least one month prior to the sample collec-

tion. All the recruited individuals had an average BMI of 21.16

(±5.23), were not diagnosed with T2D at the time of sample col-

lection, and did not have a second-degree relative history of T2D.

The above samples were then used for 16S rRNA gene V3 hy-

pervariable region amplicon sequencing, shotgun metagenomic

sequencing, and metabolomic analysis.

Fecal metagenomic DNA extraction

Metagenomic DNAwas isolated from all the fecal samples using

QIAamp Stool Mini Kit (Qiagen, CA) according to the manufac-

turer’s instructions. DNA concentration was estimated by Qubit

HS dsDNA assay kit (Invitrogen, CA), and quality was estimated

by agarose gel electrophoresis. All the DNA samples were stored

at −80◦C until sequencing.

16S rRNA gene amplicon and shotgun metagenome

sequencing

The extracted DNA (5 ng) was PCR amplifiedwith seven different

custom modified 5-end adaptor-ligated 341F and 534R primers
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14 Indian gut microbiome

(see the Primer Details section in Additional File 1) targeting the

V3 hypervariable region of 16S rRNA gene. After evaluating the

amplified products on 2%w/v agarose gel, the products were pu-

rified using Ampure XP kit (Beckman Coulter, Brea, CA). Ampli-

con libraries were prepared by following the Illumina 16S rRNA

gene metagenomic library preparation guide. Metagenomic li-

braries were prepared using Illumina Nextera XT sample prepa-

ration kit (Illumina Inc.) by following the manufacturer’s pro-

tocol. Library size of all the libraries was assessed using Ag-

ilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA)

and quantified on a Qubit 2.0 fluorometer using Qubit dsDNA

HS kit (Life technologies) and by qPCR using KAPA SYBR FAST

qPCR Master mix and Illumina standards and primer premix

(KAPA Biosystems, Wilmington, MA) following the Illumina sug-

gested protocol. Both the amplicon and metagenomic libraries

were loaded on Illumina NextSeq 500 platform using NextSeq

500/550 v2 sequencing reagent kit (Illumina Inc.), and 150 bp

paired-end sequencing was performed at the Next-Generation

Sequencing (NGS) Facility, IISER Bhopal, India.

Amplicon-based taxonomic analysis

A total of 24 Gbp of data were retrieved on de-multiplexing of

paired-end reads with an average of 210 Mbp per sample. The

paired-end reads were assembled using FLASH and were qual-

ity filtered at Q20 (80% bases) Phred quality score using NGSQC

Toolkit v 2.3.3 [57, 58]. The primer sequenceswere trimmed from

the high-quality reads. The reads were further clustered into

OTUs using closed-reference OTU picking protocol of QIIME at

≥97% identity against ARB SILVA database release 132 (13 De-

cember 2017) [59, 60]. The most abundant read was selected

as the representative sequence for each OTU and was assigned

with taxonomy using the SILVA database. An OTU table contain-

ing the abundance of each OTU for each sample was generated

and used for further analysis. For phylogenetic analysis, repre-

sentative 16S rRNA genes of phylotypes were aligned against a

core set of 16S rRNA gene sequences using align seqs.py with

the PyNAST v.1.2.2 algorithm [61]. The unweighted UniFrac dis-

tances between samples were calculated using rarefied OTU

abundance (100,000 seqs/sample) table and phylogenetic dis-

tances between representative sequences from each OTU [62].

Pre-processing of the metagenomic reads

A total of 150 Gbp of metagenomic sequence data (mean = 1.36

Gb) was generated from 110 fecal samples. The metagenomic

readswere filtered usingNGSQC toolkit v2.3.3with a cutoff≥Q20

[57]. The high-quality reads were further filtered to remove the

host-origin reads (human contamination) from metagenomic

reads using 18mermatches parameter in Best Match Tagger BM-

Tagger v3.101 (BMTagger, RRID:SCR 014619; [63]), which resulted

in the removal of an average of 1% reads. The reads from each

sample were assembled separately into contigs using IDBA ud

version 1.1.0 [64] with parameters “-mink 31 –maxk 87 –step 5.”

The reads from each sampleweremapped to contigs to estimate

read recruitment using FR-HIT version 0.7 [65]. The unmapped

reads resulting from each sample were pooled together and de

novo assembly was performed on the combined set of singleton

(unmapped) reads from all samples. The open reading frames

(ORFs) from each contig (length ≥ 500 bp) were predicted using

MetaGeneMark v.3.38 [66]. Pair-wise alignment of genes was per-

formed using BLAT version 2.7.6 [67], and the genes that had an

identity ≥95% and alignment coverage ≥90%were clustered into

a single set of non-redundant genes, from which the longest

gene was selected as the representative ORF to construct the

non-redundant gene catalog.

The IGC, which represents 1,297 human gut metagenomic

samples comprising of HMP, MetaHIT, and Chinese datasets,

was retrieved [24]. The gene catalogue constructed from In-

dian samples was combined with the IGC to construct a non-

redundant gene catalog (using identity≥95% and alignment cov-

erage ≥90%) and is referred to as “Updated-IGC” in the subse-

quent analysis.

Quantification of gene content

The quantification of gene content was carried out using the

strategy performed by Qin et al., [7] where the high-quality reads

were aligned against the updated IGC using SOAP2 in SOAP

aligner version 2.21 with an identity cutoff ≥90% [68]. Two types

of alignments were considered for sequence-based profiling:

(1) The entire paired-end read mapped to the gene.

(2) One end of paired-end readmapped to a gene and other end

outside genic region.

In both cases, the mapped read was counted as one copy.

The relative abundance of a gene within the sample was cal-

culated as: ai = bi∑
jb j

ai: relative abundance of gene in sample S; xi: the times in

which gene i was detected in sample S (the number of mapped

reads); bi: copy number of gene i in sequenced data from sample

S.

Phylogenetic assignment of reads

A total of 4,097 referencemicrobial genomeswere obtained from

the Human Microbiome Project (HMP) and National Center for

Biotechnology Information (NCBI) on 5 December 2015 (Addi-

tional File 18). The databases were independently indexed into

two Bowtie indexes using Bowtie-2 version 2.2.9 (Bowtie 2, RRID:

SCR 016368) [69]. The metagenomic reads were aligned to the

referencemicrobial genomes using Bowtie-2. Themapped reads

from both indexes were merged by selecting the alignment hav-

ing the higher identity (≥90% identity). The percent identity was

calculated using the formula: %identity = 100∗(matches/total

aligned length). The normalized abundance of a microbial

genome was calculated by summing the total number of reads

aligned to its reference genome. For reads showing hits to both

indexed databases with equal identity, each genome was as-

signed 0.5 read count. The relative abundance of each genome

was calculated by adding the normalized abundance of each

genomedivided by the total abundance. TheCHIwas used to cal-

culate the variance between the clusters compared to the vari-

ance within clusters [2].

Construction of common core microbial functions

To identify the core microbial functions in the gut microbiome

of Indian populations and to understand their abundance com-

pared to the other populations, the core microbiome was con-

structed using a similar strategy as mentioned in MetaHIT [25].

However, to construct a comprehensive core functional micro-

biome, the information of essential functions from six differ-

ent microbes including two strains of Escherichia coli, Bacteroides

thetaiotaomicron, Pseudomonas aeruginosa, Salmonella enteric, and

Staphylococcus aureus was used instead of considering a single

microorganism. The list of essential genes was collected from

DEG database v5.0 [70]. A total of 1,890 genes were identified as
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Dhakan et al. 15

essential genes in all the six microorganisms. These genes were

aligned against eggnog v4.1 database using diamond and were

annotated with eggNOG ID [71, 72]. The core gut microbiome

functions were also calculated using the above strategy for the

US, Denmark, and Chinese population gut microbial samples to

remove the variations arising due to differences in data analysis

procedures. Apart from identifying the clusters that represented

≥85% geneswithin the range of essential gene functions, the low

prevalent eggNOG functions, which were present in ≥0.0001%

abundance in ≥80% of samples in that population, were further

filtered out. This added filtration step helped in removing all the

low abundant functions. To represent the core, the variance of

these functions was also calculated between the two Indian lo-

cations. The eggNOGs showing significant deviations in varia-

tions (P value≤ 0.05; Levene’s test) [73] were further filtered out

from the analysis.

Construction of metagenomic species for MGWAS

To identify metagenomic markers using a reference-

independent approach on metagenomic samples, a

metagenome-wide association study was performed for

340 samples (age and gender matched) including India (both

locations), US, China, and Denmark populations. The genes

present in at least ≥10% of samples were considered and

clustered using the canopy-mgs algorithm as described [74].

The genes having Pearson correlation coefficient (≥0.9) were

clustered into CAGs. Furthermore, the genes for which ≥90%

abundance was obtained from a single sample were discarded.

To determine the taxonomic origin of each MGS/CAG

(metagenomic cluster), all the genes were aligned against refer-

ence microbial genomes of 4,097 genomes from HMP and NCBI

at nucleotide level using BLASTN [75]. The alignment hits were

filtered using an E-value ≤10−6 and alignment coverage ≥80% of

the gene length, and 2,773,591 (25.6%) genes showed alignments

against the reference genomes. The remaining 8,049,540 unas-

signed genes were aligned against UNIREF database (UniRef

50) at protein sequences [76], of which 4,553,299 genes (56.56%)

could be assigned with taxonomic annotations. The sequences

that foundmultiple top hits with equal % sequence identity and

scores were further assigned taxonomy based on the lowest

common ancestor method. The genes were finally assigned

to taxa based on comprehensive parameters of sequence

similarity across phylogenetic ranks as described earlier [77].

The identity threshold of ≥95% was used for assignment up

to species level, ≥85% identity threshold for assignment up

to genus level, and ≥65% identity was used for phylum level

assignment using BLASTN. The taxonomic assignments of

MGS/CAGs were performed with the criteria that ≥50% genes in

each MGS should map to the same lowest phylogenetic group.

Thus, if a particular species is assigned ≥50% genes out of the

total genes, the assignment will be carried out at species level

rather than at genus or higher orders. The relative abundance

of MGS/CAGs in each sample was estimated by using relative

abundance values of all genes from that MGS/CAG. A Poisson

distribution was fitted to the relative abundance values of

the data. The mean estimated from Poisson distribution was

assigned as the relative abundance of that MGS. The profile of

MGS/CAGs were generated and used for further analysis.

Fecal and serum metabolomic sample preparation and

derivatization

Lyophilized fecal samples were used to achieve better metabo-

lite coverage as described previously [78]. Metabolites were ex-

tracted with 1 mL of ice-cold methanol: water (8:2) from 80

mg of lyophilized samples in a bath ultrasonicator (Bioruptor

UCD-200, Diagenode) at 4◦C for 30 minutes followed by 2 min-

utes of vortexing. The supernatant was extracted by centrifuga-

tion at 18,000 g for 15 minutes at 4◦C and dried at 50◦C under

a gentle stream of nitrogen gas. To remove the residual water

molecules from the samples, 100 uL of toluene was added to the

dry residue and evaporated completely at 50◦C under nitrogen

gas. Dry extracted metabolites were first derivatized with 50 uL

of methoxyamine hydrochloride in pyridine (20 mg/mL) at 60◦C

for 2 hours, and the second derivatization was performed with

100 uL of N-Methyl-N-trimethylsilyltrifluoroacetamide (MSTFA)

in 1% trimethylchlorosilane (TMCS) at 60◦C for 45 minutes to

form trimethylsilyl (TMS) derivatives. Finally, 150 uL of the TMS

derivatives was transferred into GC glass vial inserts and sub-

jected to gas chromatography/time-of-flight mass spectrom-

etry analysis. Serum samples were prepared (polar metabo-

lites only) and derivatized as described by Psychogium et al.

[79].

Method development and validation

Matrix dilution approach was used for validating the linearity

and range of dilution [78]. Pooled fecal samples were used to

create the reference peaks to validate the peaks coming from

individual samples, which were needed due to the presence of

a relatively high abundance of fecal metabolites in the pooled

samples. The supernatant of feces after extraction was serially

diluted 2, 5, 10, 50, 100, 200, and 500 times with methanol: wa-

ter (8:2). At dilution 2, the maximum numbers of peaks were

seen and were processed with the same dilution factor for all

the samples. A total of 30 chemical standard mixtures and the

pooled fecal samples were used to validate the method. Each

stock solution of test standard was carefully prepared in deion-

ized water or with pure ethanol (50 150 350, 500 um) for the de-

termination of linear range, regression coefficient (R2), limit of

detection, and repeatability. L-norvaline (1, 2.5, 5, 10, 20 mg/mL

in ethanol) was used as a spiked external standard for the opti-

mized derivatization of the method.

GC-MS analysis

GC-MS analysis was performed on an in-house Agilent 7890A

gas chromatograph with 5975C MS system. An HP-5 (25 m × 320

um × 0.25 um i.d.) fused silica capillary column (Agilent J&W

Scientific, Folsom, CA) was used with the open split interface.

The injector, transfer line, and ion source temperatures were

maintained at 220◦C, 220◦C, and 250◦C, respectively. Oven tem-

peraturewas programmed at 70◦C for 0.2minutes, and increased

at 10◦C/min to 270◦C where it was sustained for 5 minutes, and

further increased at 40◦C/min to 310◦C where it was held for 11

minutes. The MSwas operated in the electron impact ionization

mode at 70eV. Mass data were acquired in full scan mode from

m/z 40 to 600 with an acquisition rate of 20 spectra per second.

To detect retention time shifts and enable Kovats retention

index (RI) calculation, a standard alkane series mixture (C10–

C40) was injected periodically during the sample analysis. RIs

are relative retention times normalized to n-alkanes eluted

adjacently. For serum samples, we used 2 uL aliquot with a split

ratio of 4:1 on the same column as described above. The injector

port temperature was held at 250◦C, and the helium gas flow

rate was set to 1 mL/min at an initial oven temperature of 50◦C.

The oven temperature was increased at 10◦C/min to 310◦C for

11 minutes andmass data were acquired in full scanmode from

m/z 40 to 600 with an acquisition rate of 20 spectra per second.
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Metabolomic analysis and metabolite profile generation

RawCDF files were used for peak identification and filtering, and

the XCMS package in Rwas used for pre-processing of the peaks.

First, the parameters used for pre-processing of the reads were

optimized by calculating the reliability index using the formula

given below:

Reliability index = (number of reliable peaks)2

/number of unreliable peaks.

The reliable peaks were identified for each of the settings

such as fwhm, S/N, and bw, with a predefined range of val-

ues, and regression coefficient was calculated for dilutions of

QC samples. The number of peaks with a high coefficient of

determination (R2 ≥ 0.9) was considered reliable, whereas the

peaks with very low R2 (≤ 0.05) were considered unreliable peaks

[80]. The finally optimized parameters were: profmethod = bin,

method = matched Filter, fwhm = 8 and 5 for fecal and serum

samples, respectively, and S/N = 12 and 3 for fecal and serum

samples, respectively, bw = 5 (for first grouping), smooth = lin-

ear, family= gaussian, extra= 1, plot type=mdevden,missing=

8, bw = 3 (for second grouping). Further, to compare across mul-

tiple samples, the peak intensities were normalized (root trans-

formed) and scaled using z-transformation. These normalized

and scaled peak intensitieswere used for further statistical anal-

ysis.

A multivariate statistical method, OPLS-DA [81], was used to

identify differences between LOC1 samples (n = 53) and LOC2 (n

= 55) samples. Metabolites driving the differences were identi-

fied in metabolic profiles of LOC1 and LOC2 samples using cor-

relations coefficients. The clusters of co-abundant metabolite

profiles were identified using R package “WGCNA” [82]. Signed

weightedmetabolite co-abundance correlation after scaling and

centering was calculated across all samples. The soft threshold

of β = 15was chosen for scale-free topology. The dynamic hybrid

tree cutting algorithm was used to identify the clusters with a

deepsplit = 4 and minimum cluster size = 4. The profile of each

fecal metabolite cluster was summarized using eigenvector. The

abundance profile of each cluster of metabolites (MES) was cal-

culated using the same methodology as used for MGS cluster

abundance profiles.

Retention index calculation

GC-MS data obtained from the alkene series run was used to

calculate the RI for each peak in the samples, and the obtained

RI values were further used at the time of library search for the

identification of individual metabolite.

I = 100 X [n+ (logtx − log tn)/(log tn+ 1 − log tn)

Where, tx = retention time of the peak, tn = retention time

of preceding alkane, and tn+1 = retention time of the following

alkane.

Clustering and enterotype analysis

Cluster of samples in the dataset were identified from the rela-

tive abundance profiles of Genus or Orthologous groups (OG) in

the samples. The Jensen-Shannon distances (which estimates

the probability distributions between the samples) were calcu-

lated, and the abundance profileswere clustered using partition-

ing around medoids (PAM) clustering algorithm as mentioned

previously [83]. The optimal number of clusterswas assessed us-

ing CHI that has shown good performance in recovering the op-

timal number of clusters [84]. Similarly, the prediction strength

from “fpc” package in R, which used the cross-validation ap-

proach, was also employed as another metric for cluster vali-

dation. Both the CHI and prediction strength showed quite sig-

nificantly correlated results. For clustering, CHI and prediction

strength gave non-identical values; silhouette index was calcu-

lated to estimate the robustness of clusters.

Between-class analysis

The between-class analysis was performed to identify the

drivers and support the clustering of the genus/species/OG

abundance profiles into clusters. The between-class analysis is

a type of principal component analysis with instrumental vari-

ables that maximize the separation between classes of this vari-

able. The instrumental variable here is the cluster classification

using PAM clustering and the top species, which contributed the

maximum to the principal components obtained from between-

class analysis, were identified as driver species/genus/OG based

on their eigenvalues. The analysis was performed using ade4

package in R.

Diversity analysis

The inter-sample Canberra distances were also calculated us-

ing MGS Abundance between populations. The richness of mi-

crobiome samples across populations was obtained from Shan-

non index calculated using raw gene abundance table rarefied

at equal depth (1,000,000 seqs/sample) over n = 30 random sam-

plings. The beta diversity for 16S rRNA genes (between the sam-

ples) was calculated as unweighted UniFrac distances using OTU

tables rarefied at 100,000 seqs/sample and phylogenetic dis-

tance between representative sequences from each OTU [85].

The effects of covariates such as age, diet, location (LOC1 and

LOC2), and gender were compared for correlation, with principal

components identified from principal component analysis us-

ing UniFrac distances. The polyserial correlations with P values

were calculated for categorical variables, and the significance of

the covariates for explaining the variationwas estimated at each

principal component.

Network analysis

Spearman rank correlations were computed between each of

the species/MGS and between the MGS and functional mod-

ules/metabolites. The correlations with significant P values

were selected and were used for the network analysis. The

undirected links were generated between correlated nodes

(species/KOs/modules), and the strength of the links was given

weight based on their correlation coefficients. The network

structure was generated using “igraph” package in R. The mod-

ularity of the network for KOs association was generated with

each module representing the functional modules defined in

KEGG database. The negative correlation was not considered in

generating the network modules. Moreover, the positive corre-

lations were filtered (ρ ≥ 0.6) for most of the network analysis.

Supervised learning

Predictive models were built using supervised machine learning

algorithmRandomForest [86]. Themodels were optimized using
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10,000 trees and default settings of mtry (number for variables

used to build the model). The mean three-fold cross-validation

error rates were calculated for each binary tree and the ensem-

ble of trees. The mean decrease in accuracy, which is the in-

crease in error rates on leaving the variable out, was calculated

for each prediction and tree and was used to estimate the im-

portance score. The variables showing a higher mean decrease

in accuracy of prediction were considered important for the seg-

regation of the datasets into groups based on the categorical

variable.

Statistical Analysis

All the statistical comparisons between groups were performed

using negative binomial model-basedWald test implemented in

DESeq2 and non-parametric Wilcoxon rank-sum test with FDR

adjusted P values to control for multiple comparisons [87–89].

The correlations between two variables and the correlations

within were calculated using Spearman correlation coefficient

with adjusted P values [90]. The correlations between categor-

ical and numeric variables were performed using Polyserial

correlation/biserial correlations [91]. To identify the enrichment

of enzymes/species associated with a host, odds ratio was used

as ameasure of the enrichment of a feature in a group. The odds

ratio was calculated as OR (k) = [
∑

s = LOC1 Ask/
∑

s = LOC1(
∑

i�=k

Asi)]/[
∑

s = LOC2 Ask/
∑

s = LOC2 (
∑

i�=k Asi)] for enrichment of

genes/species between two locations, where Ask denotes abun-

dance of species/gene k in sample S. Also the enrichment of

species/genes between Indian microbiome compared to other

datasets consisting of US, Denmark and China referred as “OTH-

ERS” were computed as OR(k) ([
∑

s = INDIA Ask/

∑
s = INDIA(

∑
i�=k

Asi)]/[
∑

s = OTHERS Ask/
∑

s = OTHERS (
∑

i�=k Asi)]). All the graphs

and plots were generated using the ggplot2 package

in R.

Correlation analysis between functional modules and

metabolite clusters

To calculate the association of microbial functional modules

with fecal metabolite clusters, the Spearman correlation coeffi-

cients were calculated to rank KOs for association with metabo-

lite clusters and metabotypes. To quantify the shift in Spear-

man correlation between given KEGG module and the metabo-

lite cluster compared to the background distribution, the back-

ground adjusted median Spearman correlation was calculated

for a given KEGG module m as:

SCCbg.adj = median (SCCKOsǫ KEGGModulem)

−median (SCCKOsKEGGModulem)

Where SCCKO is the partial Spearman correlation coefficient

between KO and the metabolite cluster.

Identification of microbial species driving the association be-

tween KEGG module and metabolite abundance was done by it-

erating the correlation between KO belonging to the KEGG mod-

ule and the metabolite after excluding the genes annotated to

that KO from each species. The change inmedian Spearman cor-

relation coefficient between the KOs and the metabolite, when

genes from that species are excluded from the analysis, was

calculated as described previously [8]. The species showing the

maximum change in the overall correlation of module with

metabotype was plotted.

Availability of supporting data

The datasets generated and/or analyzed during the current

study have been deposited in the NCBI BioProject database un-

der project number PRJNA397112. Metabolomics data are avail-

able via the MetaboLights database (accession number MT-

BLS803). Supporting data are also available via the GigaScience

repository, GigaDB [92].
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dataset

Additional File 3: Summary of sequencing statistics show-

ing the number of reads per sample for Whole Genome Shotgun

metagenomic dataset

Additional File 4: Summary of the reads mapped to Inte-

grated Gene Catalogue and Indian catalogue combinedwith IGC.

Additional File 5: Figures S1 to S18

Additional File 6:Differentially abundant MGS between India

and other populations

Additional File 7:Differentially abundant functions (Kegg Or-

thologues (KOs) and EggNOGs) between India and other popula-

tions.

Additional File 8: Sample-wise representation of Indian sam-

ples into Enterotypes identified fromMeta-analysiswith 37 sam-

ples from four nations used in Arumugam et al.

Additional File 9: Calinski Harabasz index and prediction

strength calculated for clusters derived from 16S rRNA gene

based genus abundance, metagenome based species abundance

and metagenome based KO abundance profiles.

Additional File 10: Mean relative abundance of genus in

Cluster-1 and Cluster-2 and their associated P-values of differ-

ence calculated using NB model based Wald test.

Additional File 11: The sample-wise association into clus-

ters using Genus based and KO based clustering and their dif-

ferences.

Additional File 12: Differentially abundant KEGG orthologue

functions between Cluster-1 and Cluster-2.

Additional File 13: Polyserial correlation of covariates with

principal components explaining variations across samples us-

ing unweighted UniFrac distances.

Additional File 14: Differentially abundant MGS observed be-

tween two locations and their enrichment calculated using Log

Odds ratio and NB model based P-values.

Additional File 15: Polyserial correlation of covariates with

principal components explaining variations across samples us-

ing metabolomics data.

Additional File 16: Table shows the Spearman’s rank correla-

tion coefficient values of metabolites with Metabotypes.

Additional File 17: Table shows the differential abundance of

KEGG Modules between LOC1 and LOC2

Additional File 18: List of reference genomes from NCBI and

HMP databases for reference mapping

Abbreviations

BCAA: branched chain amino acid; BMI: body mass index;

CAG: co-abundance gene group; CHI: Calinski Harabasz index;

FDR: False Discovery Rate; GC-MS: gas chromatography/mass

spectrometry; GO: Genus or Orthologous groups; HMP: Human
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Microbiome Project; IGC: integrated gene catalogue; IISER: In-

dian Institute of Science Education and Research; KO: Kyoto En-

cyclopedia of Genes and Genomes Ortholog; LOR: Log Odds Ra-

tio; MGS: metagenomic species; MGWAS: metagenome-wide as-

sociation study; NB: negative binomial; NCBI: National Center for

Biotechnology Information; PAM: partitioning around medoids;

OPLS-DA: Orthogonal Projections to Latent Structures Discrimi-

nant Analysis; ORF: open reading frame; OTU: operational tax-

onomic unit; PCA: principal component analysis; RI: retention

index; SCFA: short chain fatty acid; T2D: type-2 diabetes; WGS:

whole-genome shotgun.
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