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ABSTRACT Pedestrian detection is one of the important computer vision problems in automotive safety and

driver assistance domain. It is a major component of the advanced driver assistance system (ADAS) which

help the driver to drive safely. Recent literature shows a number of research activities addressing object

detection/tracking in general and pedestrian detection in particular. The solutions proposed by different

researchers vary in detection methods, detection scenario, feature descriptors, classification schemes,

detection performance, as well as computational complexity. However, the average detection accuracy is not

much promising even after many years of research. The fail-safe and real-time human detection from real

life road scenes, even in standard resolution, is far from reality. Safety critical systems in the automotive

industry have to follow well established stringent safety standards like ISO26262. Since the pedestrian

detection system deals with human safety, it also has to follow these standards before integrating to the

vehicle electronics. This paper is a study of different techniques used in pedestrian detection specific to the

automotive application, along with a description of generic pedestrian detection solution architecture.

INDEX TERMS Road safety, advanced driver assistance systems (ADAS), smart image region of inter-

est (ROI) selection, image feature descriptors, pedestrian detection.

I. INTRODUCTION

Advanced Driver Assistance System (ADAS) [1] is a set of

intelligent solutions incorporated into new generation vehi-

cles to support the driver to drive safely to avoid accidents,

casualties and loss involved. Pedestrian safety [2] is one of

the prime target of advanced driver assistance systems. The

information provided by the system can save pedestrian life,

but if the system is misbehaving or providing incorrect infor-

mation, that may cause severe injuries or death of pedestrians

and passengers of the vehicle. Because of this safety critical

nature, the reliability of the system is at most importance and

hence the system shall comply stringent safety standards like

ISO26262 [3]–[5].

Pedestrian detection is one of the most important ADAS

component, which is a typical object detection problem in

digital image processing. The presence of pedestrians can

be identified from the images captured through the cam-

eras mounted on the vehicle by applying intelligent image

processing techniques. Once the presence of pedestrian is
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identified, vehicle driver will be informed with appropriate

warning mechanism including audio visual presentation as

well as mechanical warnings like vibrating the steering wheel

or seat.

The processing stages involved in pedestrian detection

is same as any other typical object detection system. Sim-

ple objects with predefined shape may be detected through

simple technique like template matching [6]. In template

matching approach, sufficient number of templates of the

object-of-interest are prepared in advance and the real image

is compared with these templates to identify the presence of

the object in the sample image. This approach is suitable for

cases where the shape of the object is always predictable

and can be uniquely represented with a limited number of

templates. A typical case is to find a square or circular shape

in an image. But this is not the case with pedestrian detection

problem. Pedestrians may be standing ormoving in any direc-

tion and thus the possibilities of the shape of the pedestrian

is unlimited. Different dressing style and color, makes it

extremely complex to represent pedestrians with a unique

set of templates. We will need to look for more complex

techniques to detect complex objects like a pedestrian.
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Complex object detection in image processing can be

implemented typically in two ways - a classifier based

on predefined features (Feature Classifier [7] approach) or

through a classifier with self learned features (Deep Learning

approach). The feature classifier approach is the classical

approach, which is still active, whereas recently more atten-

tion is given to deep learning based object detection and

classification. Both these approaches are going in parallel,

with some attempts to combine the good from these two.

Both these approaches are based on training. That is,

the pedestrian detection system will first be trained with a

large number of known pedestrian and non-pedestrian objects

and representations/models of generic pedestrian and non-

pedestrian objects are derived from these samples. A clas-

sifier then uses these generic models to identify weather an

object-of-interest is a pedestrian on not by finding a match

with these models.

In feature classifier (FC) approach, predefined features are

used to represent pedestrian objects and a classifier classifies

an object to a pedestrian or not based on the similarity of

the features of the object-of-interest to that of the pre-trained

model. The focus here will be how best a feature can be

derived to distinguish a pedestrian object from other objects

as well as how we arrive at a best pre-trained model to match

the features of the object-of-interest. The first part deal with

deriving and fine-tuning features where as the second part

deals with developing a good training and classification algo-

rithm. Along with use of the best features, a proper classifier

trained with the best representative pedestrian dataset is also

important in accurate detection of pedestrian objects.

In deep learning (DL) approach, there are no predefined

features. The system learns best features by itself to classify

the training samples. Here the training set is much more

important than features. However, with a very good represen-

tative training set, a DL based system could out perform a FC

based system.

In Automotive domain, Real time detection, sufficient

accuracy, minimal memory footprint and computational

requirements, are important to develop a practical pedestrian

detection system as it is dealing with a safety critical problem.

This paper presents the state of the art pedestrian detection

problem as a single point reference for researchers to make

a better understanding of the system. This paper is orga-

nized as follows. Section II explains the automotive specific

scenario and requirements in general and section III takes

through the safety aspects of it. Section IV discusses on

various data capture mechanism used for automotive scenario

to capture live road scenes. Section V discusses on various

datasets available for developing and evaluating automotive

pedestrian detection solutions. Section VI explains classical

feature-based pedestrian detection and section VII covers the

modern deep learning based approach. Section VIII discusses

special cases like occluded pedestrians and handling repeated

pedestrian detection. Section IX discusses object localization

and tracking in general. Section X discusses evaluation of the

pedestrian detection algorithms. Section XI mention about

the research opportunities, followed by conclusion and ref-

erences.

II. AUTOMOTIVE SCENARIO AND SYSTEM

REQUIREMENTS

Advanced Driver Assistance System (ADAS) will help driver

to have a better understanding of the environment and par-

ticularly of the road ahead of the vehicle. Human errors

in noticing vehicles, pedestrians, cyclists, and other objects

(like Traffic signals, road-side entities etc.) in front of the

vehicle may lead to accident and severe casualties. ADAS is

meant to avoid such situation. System will monitor the road

ahead and inform the driver on any possibility of a collision.

The first step will be informing the driver, but as next step,

the ADAS system may take control of the vehicle to avoid

a collision. In case of an unavoidable collision, ADAS will

work to minimize the casualties. ADAS typically have two

parts - Active safety and Passive safety.

Active safety includes measures to avoid a collision

whereas passive safety deals withmeasures tominimize casu-

alties in case of an unavoidable collision. Figure 1 shows an

overview of ADAS. Pedestrian detection is a part of active

safety measures or collision avoidance system.

As automotive pedestrian detection deals with safety criti-

cal situations, the requirements are very stringent and should

follow automotive safety standards. An object detection or

person detection used in a consumer electronics system or

digital signage system does not deal with such safety critical

situations.

Automotive standards needs to be followed for any sys-

tem through enhanced stability, predictability and reliability.

Safety and security are of paramount importance. Since the

misbehavior of systems in a vehicles may lead to hazardous

situations to the passengers as well as other vehicles or pedes-

trians on the road, at most care to be taken on the system

reliability. All software running on the vehicle systems need

to be secured against vulnerabilities causing an external entity

taking control of the vehicle.

Vision based ADAS components should be specifically

trained to work with the images captured using a moving

camera. The ever-changing scenes due to the moving vehi-

cle will lead to increased computational complexity. The

response time should be very minimum so as to have

real-time feedback. Typical approach is to have a sepa-

rate Engine Control Unit (ECU) for ADAS along with the

Infotainment system. However, current trend is to com-

bine In Vehicle Infotainment (IVI), Instrument Cluster (IC),

and ADAS to be driven by a single module called eCock-

pit, to have the best integration and synchronization. The

hardware platform should be carefully chosen to facilitate

multi-core Central Preprocessing Unit (CPU) and Multi-

core Graphics Processing Unit (GPU) support for computa-

tionally complex ADAS processing. The ADAS algorithms

should be optimized for the hardware to provide real-time

response to the driver. Also any automotive system should

be designed with minimum processing requirement so as to
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FIGURE 1. Advanced driver assistance system (ADAS).

limit the load on vehicle battery and alternator for better fuel

consumption.

Another important consideration in automotive domain is

the ability to work on harsh weather conditions. Most of the

vision-only-based systems fails here as they are designed to

work on day-light or well-lit environments. However, com-

bining vision-based algorithms with RADAR and LIDAR

based approaches will help in addressing this requirement.

In this paper, we primarily focus on vision-based systems.

III. SAFETY ASPECTS OF PEDESTRIAN DETECTOR

We have already discussed that pedestrian detection is one

major component of ADAS. ADAS as a system also incorpo-

rates higher level features like collision detection and avoid-

ance, highway assist (self driving in a controlled environment

by following a lead vehicle on highways) etc., in addition to

pedestrian protection. When we say safety aspect of pedes-

trian detection, it is same as the safety aspects of an ADAS

implementation [5]. The brain of ADAS is a Machine Learn-

ing (ML) software, which takes decisions based on the critical

observations of the objects in the surroundings. As machine

learning is the core of ADAS, there where attempts [4] to

assess the suitability of it for compliance with automotive

safety standard ISO 26262 [3]. ISO 26262 standard includes

guidance to minimize the risk of human hazards by ensuring

a proper process in designing the hardware and software

components of an automotive system. Figure 2 gives a high

level picture of safety development process as defined by

ISO 26262. It defines different Automotive Safety Integrity

Levels (ASIL) to address the safety requirements depending

on the criticality of a system. ASIL A represents the lowest

and ASIL D the highest level of security requirements. Along

with the system design guidelines, ISO 26262 also specifies

the verification and validation requirements to ensure that the

system always work at an acceptable risk level. The core of

any process is to ensure that the system have a predictable

FIGURE 2. ISO 26262 defines development process in safety perspective.

level of working and any misbehavior can be easily traced to

the root cause.

We can see that the process defined is suitable for both

hardware and software. While saying a software, we mean

a programmed component which is developed using a pro-

gramming language either manually or automatically. How-

ever, an ML component is a software model that is learned

through supervised on unsupervised training. There is no

defined code and fully predictable output. Also there are

some inherent properties of ML, which makes it difficult to

comply to the software process. They are - non-Transparency

(contains knowledge in an encoded form), error rate (the

output is not fixed; there could be an error always.), instability

(results will be different with different training process or

dataset) and is training based (only a subset of possible inputs

can be used to train the model). Salay et al. [4] analyze these

in detail and suggests how the ML model can be modified to

ISO 26262 standard compliance.

IV. DATA CAPTURE AND SENSORS

Pedestrian detection is an image processing problem.

Image processing based ADAS systems work using 2D or
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FIGURE 3. Camera sensors used in automotive scenario.

FIGURE 4. Camera mounting on vehicle.

stereoscopic 3D images. These images can be optical images

captured using normal visible light cameras or thermal

images captured using infrared cameras. These cameras will

be fixed on windshield facing forward onto the road in front

of the vehicle. Ranging information from RADAR or LIDAR

sensors can also be used for additional verification of infor-

mation in the process.

Optical cameras are themost used sensor type for capturing

data required for pedestrian detection process. There could

be mostly a single camera but there are also configurations

with two synchronized cameras to capture stereo image pair.

Solutions which focus on low-light/night-vision pedestrian

detection use infrared cameras. There are systems which

use a combination of optical and infrared cameras for bet-

ter accuracy in all lighting conditions. For optical imaging,

older systems were using monochrome (gray-scale) cameras

whereas recent systems use full color cameras. These cameras

are shared by other ADAS solutions running on the system.

The algorithms may use gray-scale images or full color com-

ponents as required.

When stereo image pairs are used, typically, image from

one camera will be used for processing along with the depth

map generated from the stereo processing unit. The depth

map will help in identifying objects from the background,

even though there is no significant intensity differentiation.

Most of the pedestrian detection algorithms proposed by

various researchers are based on single camera images. The

amount of research in stereo based pedestrian detection is

considerably less compared to intensity only methods. This

could be because of the difficulties in getting proper depth

field information in different road conditions as well as the

additional computational overhead and cost involved.

However, there are some approaches utilizing the infor-

mation from sensors other than single camera. In [8] Keller

et al. proposes a pedestrian detection method by computing

histogram of oriented gradients (HOG) [9] from both depth

field and intensity image. They apply the fusion of intensity

and depth field at classifier level and claim that they achieved

a performance improvement up to 7.5 times of that using only

intensity image. Kira et al. used stereo disparity data along

with edge response in [10] to detect long range pedestrians.

In [11], Olmeda et al. uses far-infrared images from a vehi-

cle mounted single infrared camera for pedestrian detection.

Even if there are some exceptions as we discussed, day-light

optical images are mostly used in pedestrian detection. In this

survey, our main focus is intensity based pedestrian detection

using single optical camera.

There are also some attempts using LIDAR along with

camera input for pedestrian detection. In [12] Szarvas et al.

propose a method using fusion of camera and LIDAR data

with convolutional neural network classifier and claims they

could reduce the false positive by a factor of 2 and improve

the computational performance by 4 folds by achieving

10 fps computational performance. Because of the high

cost involved in using LIDAR or RADAR sensors, these

approaches are not widely accepted. But, in case the vehicle

already have a LIDAR or RADAR sensor, then those can be

shared with the pedestrian detection system and to improve

the performance.

V. PEDESTRIAN DATASETS

Since most of the pedestrian detection systems are learning

based, use of proper training data is very important. Also

for better evaluation and comparison of the performance of

different solutions, use of standardized test data with ground

truth information is required. There are many different pedes-

trian detection datasets available. Broadly they can be clas-

sified as ‘person’ database and ‘pedestrian’ database. The

Person database contains images of single or group of ‘per-

sons’ or people in unconstrained pose and variety of domains.

However, in our study, we focus onmore relevant ‘pedestrian’

databases, where nearly upright and possibly moving people -

referred as pedestrians - are imaged. This is matching with the

pedestrian detection problem in automotive safety domain.

The pedestrian detection systemmay use one ormany of these

datasets to train the classifier. Each dataset may contain a

set of training vectors as well as a set of test vectors with

ground truth information on the position and size of various

pedestrians available in the scene covered by the test vectors.

The pedestrians identified by the pedestrian detection system

will be compared against the ground truth data to measure the

detection rate and accuracy.

Table 1 shows a list of publicly available datasets suitable

for automotive safety domain pedestrian detection applica-

tions. This is not an exclusive list. These datasets vary in size,

the way the images collected as well as the size and resolution

of pedestrians present. The last column in the table above

shows the median pedestrian height in pixels. We can see that

the most of the datasets except Daimler, TUD Brussels and

Caltech are providing pedestrians of bigger size. However,

in a typical portable setup with cameras fixed on moving

vehicles, observing the road ahead, the size of pedestrians

will be of medium size with average size of 96 × 48 pixels.

This along with the availability of large number of training

data makes Daimler and Caltech datasets very suitable for
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TABLE 1. Datasets used for pedestrian detection.

automotive applications. Pedestrians of larger size - or too

close to vehicles are typically not common in automotive

safety applications, where the system has to identify pedes-

trians from sufficient distance so as to avoid causalities.

Another aspect of the pedestrian dataset is how the images

are captured. For automotive safety domain, a portable video

capturing setup [28] is more preferred over a static imaging

setup. This portable setup provides realistic imaging scenar-

ios and helps to develop robust and optimum solutions for

pedestrian detection in automotive safety.

Pedestrian detection in automotive safety is typically of

two types: 1) pedestrian detection from infrared (IR) images

to support night vision and 2) pedestrian detection from

optical images to support day-time or lit-up scene detection.

Both these cases are important to vehicle safety, however,

most of the pedestrian detection datasets available are for

day-time pedestrian detection. There are exceptions like OSU

thermal image dataset [14] and LSI far infrared pedestrian

dataset [11]. Some of the methods of day-light pedestrian

detection are also applicable for night-time pedestrian detec-

tion; however, the feature descriptor should be selected con-

sidering this. We can also combine both optical images as

well as IR images to improve the detection accuracy at an

increased computational cost. In day-light images, singular

or stereo images are available. Singular images are mostly

used but there is an increasing trend of using stereo images

for improving object detection. KITTI [24] is an extensive set

of Computer Vision benchmark suite. The suite consists of

real-life stereo and optical flow images particularly suitable

for 3D object detection and tracking. The dataset includes

objects of different types like pedestrians, cyclists and differ-

ent types of vehicles. Stereo or color or monochrome images

of objects as well as LIDAR data are available. There are

around 25000 pedestrian objects with around 25% of them

are semi-occluded and 5% are truncated.

Cityscapes [25] is a recent dataset specifically targeted

for automotive applications, recorded on all normal weather

conditions from 50 cities in Europe. The dataset is designed

keeping deep learning based approaches also along with clas-

sical feature based approaches. The dataset contains more

than 25000 annotated images with annotations for 30 dif-

ferent object types grouped to different classes including

human, vehicle,nature, sky, construction etc. Both pixel-vise

and instance-vise semantic annotations are available. The

dataset includes hi-resolution and Hi-Dynamic Range (HDR)

annotated stereo image pairs along with vehicle information.

Annotations in Cityscapes dataset are compatible to other

common datasets and the classifiers trained on the dataset

perform better while validating with other datasets. Zhang

et al. created a new set of pedestrian annotations on top

of Cityscapes to form CityPersons [26] dataset. CityPersons

include around 35,000 person annotations including training,

testing and validation sets. Out of the 19,654 unique person

annotations, 83% are of pedestrians, remaining 17% covers

riders, passengers and other person objects. Using CityPer-

sons dataset for training, authors could achieve better pedes-

trian detection performance on various datasets. CityPersons

also include muchmore occluded pedestrian annotations than

any other datasets. Out of the pedestrian annotations, only

30% are fully visible pedestrians. This makes CityPersons a

more practical dataset for pedestrian detection.

The Visual Perception benchmark (VIPER) [27] dataset

introduces the new concept of virtual world. The dataset

is generated from 250,000 full hi-definition (HD 1080)

realistic-virtual video frames, generated using advanced gam-

ing concepts. All the images are annotated to be used with

various types of object detection approaches. The dataset

includes optical flow images as well as 3D scene layouts

along with the annotated images. Pixel-wise and instance-

wise semantic annotations available. Being a virtual dataset,

the possibilities are unlimited. The model can also be

upgraded to include more object categories as well as envi-

ronment conditions. Virtual datasets have a better future in

preparing a near-complete dataset to address any problem.

This also saves the cost of data capturing from the real world

but have limitations of computer graphics, which is getting

narrowed as the graphics rendering techniques are improving.

There are many other datasets like Microsoft COCO [29],

PASCAL Context [30], PASCAL VOC [31], ImageNet [32]

etc. used in computer vision and deep learning, which are not

designed for automotive use cases and we are excluding them

as our focus is on automotive domain. In this paper, we focus

more on methods using day-light pedestrian detection from

singular images.

We have discussed about various dataset but there is no uni-

versal dataset which can produce a perfect classifier. In other
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FIGURE 5. Dataset optimization.

words, none of these datasets represent a hundred percent

perfect object class. As we already mentioned, the quality of

any classifier depends on the dataset with which it is trained.

A perfect dataset leads to the best of a classifier at the same

time, an imbalanced dataset limits the classification effi-

ciency. It is not possible to simply tell which data contributes

to a good classification and which do not. There are differ-

ent attempts to improve the dataset for pedestrian detection.

FairTrain [33] is one of the recent attempt, where the authors

propose an improved data selection and training process. Fair-

Train proposes an optimum initial dataset selection through

bootstrapping followed by a cascade of rejectors to prepare

an optimized dataset for the final classifier. Figure 5 shows

the dataset optimization process as described in [33]. The

process start with a small set of randomly selected data sam-

ples and iteratively refines the dataset by including the most

mis-qualified validation samples. 1000 iterations are recom-

mended to refine the dataset while a cascade of rejectors are

employed and 5000 iterations recommended when classifier

is standalone. Authors also shows that with optimized dataset,

a simple Histogram of Oriented Gradients (HOG) based Sup-

port VectorMachine (SVM) [34] classifier outperformsmany

of the best-known classifiers.

VI. PEDESTRIAN DETECTION - FEATURE-BASED

APPROACH

The classical approach of pedestrian detection is a feature-

based classifier as shown in figure 6. There are typi-

cally two stages in the pedestrian detection process - an

offline training stage and online detection stage. During

the training stage, the pedestrian detector is trained with

many positive (True pedestrian) samples as well as negative

(non-pedestrian) samples. A classifier engine is constructed

based on the features extracted from these samples. During

the actual detection stage, live video feed from the dash-

mounted camera is fed into the system, where the system will

detect the pedestrians visible in the scene and appropriately

inform the driver with details.

The classifier training is an offline activity through which

we will create a classifier engine, which can discriminate

FIGURE 6. Feature-based pedestrian detection system.

FIGURE 7. Deep Learning model based pedestrian detection system.

a pedestrian image from a non-pedestrian image based on

the intelligence learned through the iterative training pro-

cess. The actual classification is an online activity where the

pedestrians are identified from the live video/image sequence.

Because of the computational complexity of the pedestrian

detection process, there are very less solutions available with

near real-time performance and the detection accuracy may

be compromised in some solutions to meet the computational

requirements. One of the best pedestrian detection solution in

terms of speed and detection performance is CrossTalk [35]

proposed by Dollar et al., which runs at 14 fps with Caltech

USA test video of VGA (640x480) resolution at around

50% detection rate using an Intel core i7 computer. Another

solution by Dollar et al. [36] detects pedestrians at around

5 fps from real-life VGA video. The recent proposed solu-

tion from Dollar et al. [37] improved the detection time by

using feature pyramids to avoid re-computation of feature

descriptors at different scales. Other solutions are far behind

this in detection time. Of the 16 top speed systems tested

on Caltech dataset, the average pedestrian detection rate is

less than 30%. However, in closed environments and non

real-time systems, many solutions provide better detection

rates. In this section, we will discuss about common features

and classifier architectures used in feature-based pedestrian

detection systems.

A. ROI SELECTION AND PREPROCESSING

The object detectors are trained with fixed size object sam-

ples and expect similar input while actual classification. For
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FIGURE 8. Scanning window ROI selection.

example, to train a pedestrian detector, cropped and scaled

pedestrian images are given as positive samples as well

as equal size non -pedestrian sample images are given as

negative samples. The classifier will classify a similar size

image as pedestrian image or non-pedestrian image based on

the feature extracted from them. To detect pedestrians in a

real life image, we actually extract smaller portions of the

image and check for presence of pedestrian in them. Images

are extracted from all possible positions and sizes, and then

scaled to an acceptable size before giving to classifier. This

process is called Region Of Interest (ROI) extraction.

Standard way of selecting ROI from test image is using

a scanning window to search through the image using over-

lapped ROI windows. Figure 8 shows the scanning window

process for ROI selection. These windows will be placed

at all possible pixels and scales in the image. If multi-scale

detection is used, the ROI windows are used in different

scales and then these are scaled to the uniform size used

while training the classifier before proceeding with extracting

the feature. The ideal method is to use all possible ROI size

and place the windows on all possible pixel locations in the

image. However, this will greatly increase the computational

complexity. To reduce the complexity, only limited scales and

window locations are used.

Another way to reduce the computational complexity in

scanning window approach is to reduce the search space

instead of limiting the window scale and position. If unnec-

essary portions of the image including the image background

and the areas of the scene where objects of interest are not

expected can be excluded from the search space, there will

be huge saving in computational cost. Complex techniques

may be used for background removal and ROI selection

considering this computational savings. One of our previ-

ous papers [38] analyzes the possibility of using the cam-

era position and road model in predicting the potential area

and size of the pedestrians expected in the so as to reduce

the search space and hence the computational complexity.

Figure 9 shows the road image model used in [38] to reduce

the search space. We could see that by applying a road

model on the image, we can reduce the search space by a

factor of 8. However, the road model need not be same in

all conditions. This may change when the vehicle is turning,

ascending or descending. Figure 10 shows the context based

road model, which can be applied while the vehicle is turning

FIGURE 9. Limiting search window and scale using a road model.

FIGURE 10. Context-based road model - turn right.

right. During actual detection process, the system can get

the vehicle status and adaptively adjust the road model to

minimize search space.

References [38] and [39] discusses the possibility of

applying background removal using Active Contour

Model (ACM) as described by Chan and Vese [40]. By apply-

ing ACM, the search space could be further reduced by a

factor to 2 to 4 [38] depending on the image.

The images captured are usually preprocessed before pro-

viding to the classifier algorithm for analysis. Preprocessing

used for training is repeated on the test Regions of Inter-

est (ROI) also, to improve the detection performance. The

most common preprocessing operations are intensity normal-

ization and scaling of cropped ROIs. The images are prepared

so as to be efficiently processed by the algorithm. The pre-

processing techniques used may vary from simply cropping

of images to transforming the images into a different domain.

The common preprocessing operations include image back-

ground removal and enhancing image quality(brightness,

contrast, gamma, sharpness/smoothness etc) of the ROI.

Different types of filtering may be applied on the image

to enhance or highlight the features that will be used by the

algorithm for object detection. This could be simple convo-

lution filters or even complex transformations, which could

considerably improve the detection accuracy or speed.

B. FEATURE EXTRACTION

The preprocessed ROI image is not directly fed to the clas-

sifier. An image can be considered as a 2-dimensional array

of correlated intensity values. It will be easy for humans to

identify the object present from this image data, but for an

automated Artificial Intelligence (AI) system like pedestrian

detection, limited information can be directly taken from
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this intensity map. To improve the classification efficiency,

we need to extract some feature descriptors from the ROI,

which will help the classifier to identify whether the ROI

contain an object of interest. A feature descriptor should help

the classifier to uniquely identify different classes of input

types - in our case a pedestrian and a non-pedestrian. There

are different feature descriptors used by different researchers.

It is not easy to simply say one is better to another. The

feature descriptor to be used will depend on what type of

information we are searching from the image. The feature

could be as simple as the average intensity of the image or

a complex vector like co-occurrence histogram of oriented

gradients (CoHOG). The algorithm may use a single feature

descriptor or a combination of multiple feature descriptors

extracted from the image. In some case, the size of combined

feature vector may be more than the size of the image under

processing. The purpose is to extract some vector from the

image, which will uniquely represent its content to the algo-

rithm.

It is not possible to specify a particular feature descriptor

which will uniquely represent the image content in all scenar-

ios. Some descriptors may perform better in some cases and

may fail in other cases. Researchers are working on identi-

fying new feature descriptors or improving the existing ones

to be used in different cases like pedestrian detection. Years

of research improved the feature descriptors a lot. Highly

capable feature descriptors as well as combination of multiple

feature descriptors were introduced. Here we are discussing

some of the feature descriptors and combinations commonly

used for pedestrian detection. We should use the optimum

feature descriptor with sufficient uniqueness at minimum

computational complexity to develop an efficient pedestrian

detection solution.

Since we are focusing on automotive safety applications,

where low or medium resolution pedestrians has to be

detected, we focus on sliding window based approach, which

is more suitable for the target application. There are basic

features addressing image intensity variations, object shapes,

histograms, and many other aspects of images like human

motion. There are a large number of feature descriptors pro-

posed by various researchers. We address the most common

ones, their enhancements and combinations in the remaining

part of this section. An extensive survey of all the feature

descriptors used for object detections outside the scope of

this document. The readers can refer detailed surveys by

Dollar et al. [28], Enzweiler and Gavrila [23] and Geronimo

et al. [41] for more details.

1) HAAR WAVELET

Haar wavelet is first proposed by Papageorgiou and

Poggio [7] as a feature for object detection. This is further

taken up by Viola et al. [42]. Papageorgiou used SVM [34]

as a classifier whereas Viola and Jones used an Adaboost [43]

decision tree classifier. We will discuss SVM and Adaboost

while we discuss classifiers in detail. The wavelet func-

tion and its scaling function can be represented as in

FIGURE 11. Haar wavelets for pedestrian detection.

equations 1 and 2.

Wavelet function:

ϕ(t) =



















−1 0 < t <
1

2
,

1
1

2
< t < 1,

0 otherwise.

(1)

Wavelet scaling function:

φ(t) =

{

1 0 < t < 1,

0 otherwise.
(2)

Figure 11 shows the basic construction of a Haar wavelet

and some of the generated filter masks. Viola and Jones Haar-

like feature was one of the oldest and successful feature

description used for human face detection and human detec-

tion in general. The integral image representation reduced the

computational complexity significantly which helped near-

real-time human detection. Viola et al. [42] further proposed

computing Haar-like features on difference images from

motion sequence which further reduced the computational

complexity. There is a reference implementation [44] which

is available as part of Open CV [45] library, implement-

ing Viola Johns Haar features (VJ) for pedestrian detection.

Trompouki et al. [46] took this implementation and opti-

mized it for multi-CPU-multi-GPU platforms with specific

focus to automotive use-cases. They could achieve around

90 times improvement on computation time and could meet

real-time detection at 21fps.

2) EDGELET AND SHAPELET

Shape of the object is a key point in identifying any object

of interest. Shapes can be represented by the silhouette of

the object, which can be a combination of line and arc

segments, called edgelets. The edges can be extracted from

image by applying edge filters like sobel filter. Wu and

Nevatia [13] used specific combinations of edgelets of 4

to 8 pixels in length at specific locations for detecting a

pedestrian silhouette. Line and arc edgelets and their sym-

metric pairs were used to identify Head and shoulder, Torso

and legs along with whole body. Wu and Nevatia proved

that the combined detection of these body parts together

will be a good detector for pedestrian. Figure 12 shows

the use of edgelets as described in [13]. Sabzmeydani and

Mori combined weighted directional gradient of image ROI

to learn a detector called shapelet [47] by using a variant
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FIGURE 12. Edgelet feature.

of Adaboost decision. Adaboost is further used to build a

classifier from these shapelets. However shapelet is a fea-

ture learned from rather weak directional gradients, whereas

edgelets are defined features directly used with classifier.

A feature called edge affinity function can be computed

from the edgelets which will represent the distribution of the

edgelets at different positions in the image ROI. Edge affinity

will in effect represent the shape of the object in the ROI.

Edge affinity function can be computed as follows.

Let an image I be represented as edge intensityM I (p) and

normal nI (p) at position p. The Edge intensity M I and the

edge direction2I can be computed by applying an edge filter

like Sobel operator as below. Normal nI is computed from

edge direction 2I .

Gx =





+1 0 −1

+2 0 −2

+1 0 −1



∗ I , Gy =





+1 +2 +1

0 0 0

−1 −2 −1



 ∗ I

Edge IntensityM I =

√

G2
x + G2

y,

and

Edge Direction 2I = atan

(

Gx

Gy

)

Neighboring edge points can be combined to form

edgelets, which are small edge segments, representedwith the

position and normal vectors of the edge points. Let an edgelet

E contains k edge points. The edgelet E can be represented

as E =

[

{ui}
k
i=1 ,

{

nEi
}k

i=1

]

. Now the affinity between edgelet

E and the image I at position p can be computed as:

f (E; I , p) =
1

k

k
∑

i=1

M I (ui + p)

∣

∣

∣

〈

nI (ui + p), nEi

〉∣

∣

∣ (3)

For simplifying the computation, the dot product
∣

∣

〈

nI (ui + p), nEi
〉∣

∣ between two normal vectors can be approx-

imated as

l [δ] =



















1 δ = 0,

4/5 δ = ±1,±5,

1/2 δ = ±2,±4,

0 otherwise.

where the input δ is the difference between two quantized

orientations. Let the quantized edge orientations of image

I and the edgelet E are represented by V I (p) and
{

V E
i

}k

i=1

respectively. Now the affinity computation will be simplified

as

f (E; I ,w) =
1

k

k
∑

i=1

M I (ui + w).l(V I (ui + w) − V E
i ) (4)

3) HISTOGRAM OF ORIENTED GRADIENTS (HOG)

Gradient based feature descriptors were widely accepted

because of their invariance to intensity changes. HOG is

one of the most successful gradient based feature descriptor

for pedestrian detection which was proposed by Dalal and

Triggs [9]. HOG was subject of many researches and there

are many variants of HOG and combination of HOG with

other methods, which led to better detection performance.

Mostly all of the modern detectors use HOG in some form.

Computation of HOG is explained below.

Let I (x, y) be the gray-scale image of (w × h) resolution.

The gradients of I , gx and gy in x and y directions can be

computed by filtering with [−1; 0; +1] and [−1; 0; +1]T .

Then the gradient orientation θ (x, y) and magnitude M (x, y)

is computed as

θ (x, y) = atan

[

gy

gx

]

M (x, y) =

√

g2x + g2y (5)

To simplify the computation, gradient directions can be

quantized into b bins as below:

θq(x, y) = round

(

b× θ(x, y)

π

)

mode b

Finally, the gradient image G(x, y, z), a sparse matrix of

size (w× h× b) can be computed as:

G(x, y, z) =

{

M (x, y) z = θq(x, y),

0 otherwise.

Histogram of the orientations are then computed over fixed

size overlapped blocks. Let B(s × s) be the defined block at

location (x, y) of G. The HOG of the block B is a vector of

length b, where b is the number of orientation bins. The block-

HOG of block B can be represented as:

HOGB =







s
∑

dx=1

s
∑

dy=1

G(x + dx , y+ dy, z)







b

z=1

(6)

HOG of the ROI is then computed by concatenating

block-HOGs of all overlapped blocks within the ROI. The

block-HOGs are also optionally normalized over neighboring

blocks to minimize variations on image brightness. Figure 13

gives a pictorial representation of the computation of HOG

feature descriptor.

Felzenszwalb et al. [48], [49] improved the use of HOG by

using coarse scale HOG as in [9] and additional fine scale

HOG of body parts, which can be moved and deformed.

Zhu et al. [50] used integral histograms for faster HOG com-

putation. Watanabe et al. [51] proposed a high dimensional
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FIGURE 13. HOG feature.

FIGURE 14. CoHOG feature.

feature called Co-occurrence Histogram of Oriented Gradi-

ents (CoHOG) based on HOG where instead of taking the

histogram of the gradients, histogram of gradients of pixel

pairs are taken. This significantly improves the detection

performance of classifier at the cost of increased feature

size and computational complexity. Figure 14 shows the

computation of CoHOG. SVM is usually used as classi-

fier when HOG or CoHOG are used as feature descriptor.

In [52] Nan et al. proposed a different improvement to HOG.

They used Histograms-Of-Salience (HOS), by aggregating

saliency map learned using histogram based contrast with

the oriented gradients.The authors showed large performance

improvement compared to simple HOG on INRIA dataset

using this approach.

4) LOCAL BINARY PATTERNS (LBP)

Local binary patterns are also used along with HOG for

improving the pedestrian detection performance [53]. LBP

captures the local texture properties in an image. As in HOG,

the image will be divided into blocks for calculating the LBP.

Value of each cell is compared with each of its 8-neighbor

cells. If the cell value is greater than the neighbor, a value of

0 is put in the neighbor cell. Otherwise a value of 1 is placed.

Once all 8 neighbors are checked, the decimal representation

of the binary number obtained by arranging the generated 1s

and 0s in a clock-vise order starting from the top neighbor

is called the LBP of the cell. Let {P(i, j)}ki,j=1 be the cell at

location (i, j) in the image block and {N (k,P)}8k=1 represent

its 8 neighbors in clock-vise order starting from the top one,

then the LBP can be computed as the decimal equivalent of

FIGURE 15. LBP feature.

the Binary number B [k], which is defined by:

LBP = Integer(B) (7)

where the binary pattern B is constructed as,

B = {B [k]}8i=1 =

{

0 P > N (k,P),

1 otherwise.

LBPs of each cell is computed to generate the Block LBP.

To generate a feature vector out of this, histograms of each

LBP block is computed and then concatenated for an image

ROI similar to HOG computation. Figure 15 shows a pictorial

representation of LBP computation process.

5) CHANNEL FEATURES

Enhancements of the basic feature descriptors as well as

combination of them with other methods were proposed to

improve the detection performance as well as reducing com-

putational complexity. Instead of computing a single com-

plex feature, recent trend is to use a combination of simpler

features called channels on a boosting decision tree. These

feature channels will be of same size as of the image and

may be processed in same way by the classifier. Another

advantage of these channels is they are capable of parallel

implementation as well as further optimization. Originally

Dollar et al. proposed the integral channel features [54] for

pedestrian detection, where multiple registered image chan-

nels generated through linear and non-linear transformations

on the image, features like local sums, histograms, and Haar

features are efficiently computed using integral images. They

prove that these combinations can outperform HOG or other

individual features when computed efficiently. Dollar further

improved the detection speed by utilizing the correlation

between neighboring feature channel responses combined

with a soft classifier model in [35].

Mathias et al. used the integral channels along with

a modified occlusion specific detectors called Franken

classifiers [55] to improve detection of partially occluded

pedestrians. Lim et al. used 3 gradient magnitude channels

by applying Gaussian filtering at three levels along with other

integral channels and computed self-similarity features [56]

on them. The featured dimension is then reduced before

applying the boosting classifier. Zhang et al. modified
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FIGURE 16. Channel features.

the channels by applying adaptive location specific Haar

features [57] on the computed channels to reduce the fea-

ture size. Benenson et al. [58] also improved the detection

by applying filtering on channels as described in [59] and

strengthening the boosting classifier.

In [37], Dollar et al. use Aggregate Channel Features

(ACF), which use a set of 10 features including normalized

gradient magnitude, 6 channel HOG, and LUV color chan-

nels. They use channel pyramids to reduce channel compu-

tation at different scales. Nam et al. [60] and Dollar further

improved the ACF features by using Locally De correlated

Channel Features (LDCF) generated by decorrelating ACF.

They could achieve a 10x reduction in false positives against

ACF using LDCF at same detection rate. The features like

Integral channel, ACF and LDCF are designed to be used in a

feature pyramid so as to reduce the computational complexity

in re-computing the features for different scales. Figure 16

shown some features used in generating feature pyramids.

Lin et al. proposed feature pyramid networks (FPN) [61]

to take the feature pyramid concepts to deep learning algo-

rithms. Figure 17 shows an optimized way of computing

multi-scale channel pyramids as proposed in [37]. There are

many other variations of channel features. Rajaram et al.

proposed an improvement on ACF detector by training with

multi-scale vectors [62]. They could achieve 6% improve-

ment on the detection accuracy compared to single-resolution

training.

Yang et al. used Convolutional Channel Features

(CCF) [63] learned from raw image data using Convolu-

tional Neural Network (CNN) or ConvNet [64], [65] instead

of the computed channels discussed above. They also

tried by combining CCF and ACF channels and resulted

in better detection performance than both of these two.

Zhang et al. extended the channel features to Checker-

board features by dynamically applying a filter bank [66] on

HOG-LUV channels. Cai et al. developed a complexity

FIGURE 17. Optimized multi-scale channel pyramid computation.

aware cascade training (CompACT) method [67] which will

dynamically select features from a pool of features with

varying complexity. The feature pool contains features like

ACF, self-similarity features, Checkerboard features, Locally

decorrelated HOG features and some ConvNet features to

further improve the detection performance.

6) OTHER FEATURE DESCRIPTORS AND COMBINATIONS

Channel features are of typically same size and can be

easily aggregated. There are approaches like [67] where

features of different type and length and complexity are

also combined together to form a bigger feature descriptor.

Wojek and Schiele [68] proposed a multi-feature, which is

combination of Haar-like features, shapelets, shape context

and HOG, and showed it outperforms any of these individ-

ual features. Walk et al. [69] further added local color self

similarity and motion features to this multi-feature. Wu and

Nevatia [70] combined HOG with edgelet and covariance

features. Wang et al. [53] combined HOG with local binary

patterns (LBP) texture descriptor.

Many researchers used combination of shape information

and multi-part detection approaches to improve detection

performance. Mohan et al. [71] used a two stage approach

where the results of head, arm and legs detectors where

matched with a rough human model. Lin and Davis [72]

used a part-template tree to model human body parts and

used HOG along with shape outline information. Enzweiler

and Gavrila [73] performed human classification combined

with labeling into one of four canonical orientations. Liu

et al. proposed Context-Aware saliency detection on ROIs

along with HLS (HOG, LBP and Scale-invariant feature

transform (SIFT)) feature model to reduce the computational

complexity in [74]. SIFT [75] is a scale invariant image fea-

ture represented by computing key-points and their direction

in the image. The key-points are computed based on local

neighborhood features. 16x16 neighborhood of each Key-

point is divided into 4x4 blocks and 8-bin oriented histogram

is computed for each of these blocks which then com-

bine to generate 128 bin vector called key-point descriptor.
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Key-point descriptors are shown as efficient scale invariant

image feature.

7) FEATURE OPTIMIZATION AND CHOOSING THE BEST

As we combine different features together, the overall fea-

ture size increases and the computational time required to

compute as well as classify will also be drastically increased.

Most of the approaches use some sort of sampling of the

feature descriptors to reduce the overall length. As the num-

ber of individual feature descriptors are increased, sam-

pling will have less effect on overall detection performance.

The sampling can vary from simply picking from a set,

to applying a complex filtering as used in [66]. Another

approach to reduce overall computational complexity is to

chose the features which can be independently computed

using a parallel processing hardware like GPU or Digi-

tal Signal Processors (DSP). Also the computational algo-

rithms will be modified to utilize the parallel processing

architecture.

We have discussed different standard feature descriptors

as well as their combinations. It is difficult to tell which

individual feature is the best; however, HOG is considered as

one of the most useful feature for pedestrian detection. This is

evident from the amount of literature describing the HOG and

their combination. Another important point is the use of chan-

nel features. Channel features and their multi-scale pyramids

are easy to compute with the help of a parallel processing

hardware. Also instead of directly using the individual feature

descriptors, filtering them with intelligent filters will help

both in decorrelating the data as well as reducing the feature

length. We can see that some features and methods perform

best on some pedestrian test datasets where they fails on other

datasets, which shows that, no feature can be treated as the

ideal or best for all possible scenarios. The best one is yet to

come!.

8) SELF-LEARNED FEATURES

As we have already discussed that no feature can be treated as

‘The best’, the alternate way is to use some technique to learn

features from the data. This concept is used in Convolutional

Neural Networks (CNN), where a set of convolutional filter

kernels are learned from the training data. Each of these

convolutional kernels are 2D or 3D convolutional filters.

The filter coefficients are learned from the data during the

training process. In a typical CNN, there could be multiple

layers of convolutional filters, arranged sequentially. The

filters in each layer is applied on the image progressively.

These set of convolution filters will generate a set of feature

vectors, which can best discriminate the input data provided

during the training. These features are typically given to a

fully connected Neural Network (NN) classifier. However,

the convolutional features learned through the CNN training

can also be used with other classifiers.Wewill further discuss

NN while we discuss classifiers in section VI-C.1 and CNN

while we discuss Deep learning based pedestrian detection in

section VII

FIGURE 18. Classification of object feature vectors plotted on feature
space.

C. MACHINE LEARNING IN PEDESTRIAN DETECTION

Machine Learning (ML) is the process of making a machine

to perform intelligent tasks like classification. The system

is learned to execute tasks which are typically handled by

humans using their intelligence. Humans learn by examples.

Same concept is applied on a machine, where the machine

is provided with a vast set of examples and provided with

special algorithms to learn the underlying similarities and

differences, which will help them to group into different

classes or clusters. In this section, we discuss some of the

commonly used machine learning architectures and how they

can be used for pedestrian detection.

Classification is the process of grouping data-points in an

n-dimensional feature-space into a given set of m buckets or

clusters or classes. By applying classification on a data point,

we will assign a class label to it depending on its position in

the feature-space. Figure 18 shows the classification process.

Classifier is being addressed from the very start of clustering

studies and there are plenty of research work happened on this

area. A very simple classifier is a nearest-neighbor (NN) clas-

sifier, where each data point is attached to the class, which is

nearest to it. There are different ways to measure the distance

between a data point and a class - a simple way is to find

the euclidean distance between the data point and each of the

class centers. Typically, in object classifiers, every object is

mapped to an n-dimensional feature space for a classification.

For this, a feature is extracted from the raw object data. Vari-

ous feature descriptors are explained in the previous section.

NN classifier is generalized to k-NN, where a data point is

assigned to k-neighboring classes with an attached probabil-

ity value. Simple methods like this will be useful in cases

where the data points can be easily clustered. However, for

complex problems, like pedestrian detection, more advanced

classification techniques are needed. In this section, we will

discuss the different classifier approaches used in computer

vision. There are many approaches to classification and thus

a variety of classifiers. Table 2 shows a typical classification

of the classification methods. An extensive study of various

classifiers and their implementations are available in [76].

From the vast pool of classification approaches, some are

relatively common to object classification in digital image

processing. A detailed discussion on their architectures and

implementation details are out of the scope of this survey,
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TABLE 2. Classifier approaches.

but we will give an overview of some of the commonly used

techniques.

1) ARTIFICIAL NEURAL NETWORK (ANN)

ANNs [77] try to mimic how human brain works. Human

brain contains a vast network of neurons and the information

or memory is stored in their interconnections. When some

trigger is received from the sensory organs, brain will try

to pickup all the interconnected information from the neu-

ral networks based on the context. ANNs also work in a

similar fashion. The basic element of ANN is an artificial

Neuron (or Perceptron), which taken n inputs and produce

FIGURE 19. Perceptron - building block of ANN.

one output. The Neuron implements a transfer function,

which is typically a weighted sum of its inputs
∑n

i=1 wixi,

wherewi is the weight assigned to the i
th input xi. A bias bwill

be added to each perceptron and a nonlinear activation func-

tion is applied to the final value to control the output range.

Figure 19 shows a pictorial representation of a perceptron.

Typical activation functions used are - Sigmoid, Hyperbolic

Tangent, and Rectified Linear Unit (ReLU). ReLU is themost

common and simple activation function used. ReLU allows

non-negative values pass through. The computation can be

represented as f (x) = max(0, x).

Considering the activation function as ReLU, the final

output of a perceptron with n inputs can be computed as:

y = max(0,

n
∑

i=1

wixi + b)

where, b is the bias, xi is the ith input and wi is the corre-

sponding weight. The output can be controlled by adjusting

the weight wi.

An interconnection of multiple such perceptrons, orga-

nized in different layers is called a Multilayer Percep-

tron(MLP) or Artificial Neural Network (ANN). Such net-

works can learn information by adjusting the interconnection

weights during the training process. The first layer is called

input layer, which will have the number of neurons corre-

sponding to the feature vector size and the last layer will have

one output for each of the classes to be identified. During the

training process, the interconnection weights are adjusted so

as to associate each of the training samples to their correct

classes. The technique used to adjust the network weights to

match the training sample output is called back propagation.

The difference between predicted output and actual expected

output is considered as error and the weight of the previous

layer are adjusted to minimize this error. This then continues

to each neuron in the previous layer until we reach the input

layer. This is why the technique is called back propagation.

The network can then be used to classify any test objects pro-

vided we have used enough number of representative training

samples. Many variants of ANNs are in use. Figure 20 shows

a typical ANN for a two-class classificationwith 1 input layer,

1 output layer and two hidden layers.
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FIGURE 20. Artificial neural network as object classifier.

2) SUPPORT VECTOR MACHINE (SVM)

SVM [34] is one of the most common classifier used for

pedestrian detection. SVM tries to map each of the object

onto an n-dimensional feature space and tries to draw (n−1)-

dimensional hyperplanes on it so as to separate the objects

into different classes. To illustrate the idea, let us consider

two heaps of mangoes and apples kept near to each other on

a table. This can be mapped to a two dimensional feature-

space considering their x and y positions and a line can be

drawn between the two heaps so as to separate them into two

classes. Let us say, whatever comes left to the line are apples

and those on the right of the line are mangoes. The example is

too simplistic and requiring a 2-dimensional feature space to

correctly separate the classes where a practical object detec-

tion will require a high dimensional space. But the concept is

same. In a basic SVM classifier, there will be n inputs {xi}
n
i=1

and an n-dimensional weight vector {wi}
n
i=1. The output of the

classifier is computed as
∑n

i=1 wixi. If the classifier needs to

identify only two classes, the sign of the output will decide the

same. SVM is also a learning classifier, where the weights wi
are adjusted to correctly classify the training samples. The

hyperplane dimension may not be required as the same of

feature size; in fact, that may be much higher than the feature

size for correct classification. For a multi-class classification,

there could be multiple outputs on SVM which will provide

a probability of the input sample to be in each of the classes.

3) DECISION TREES (DT) AND BOOSTING

Decision trees are another approach towards classifier imple-

mentation. Here a set of week decision rules are defined along

with a hierarchical sequence of application of these decision

rules. The input is repeatedly refined at each stage and finally

grouped into one of the output classes. Each decision rule is a

simple weak rule considering the final classification problem;

but helps in gradually refining the final decision by sequen-

tially applying these simple rules. The rules are defined in a

tree form and the leaves are final classes. Boosting is a type of

classifier implementation applying this refinement concept.

Here, a set of week classifiers are defined and are sequentially

applied on input data by refining the classification at each

stage. A very low complex classifier can be implemented at

the first stage where the input count is more. Better and com-

putationally intensive classifiers can be used in later stages,

where the amount of data is getting reduced at each stage.

Adaboost [43] is one of the most used boosting classifier in

pedestrian detection. In the pedestrian classification section,

we will discuss different variants of the boosting classifiers

in pedestrian detection.

D. PEDESTRIAN DETECTOR TRAINING AND

CLASSIFICATION

In this section, we discuss on different aspects of train-

ing a feature-based pedestrian detector and the process of

classification.

1) TRAINING OF FEATURE-BASED PEDESTRIAN CLASSIFIER

As discussed in the Introduction, All pedestrian detection

systems are learning based. The system will be trained using

a set of training data, where images of pedestrians in different

size, shape and orientation are fed to the system.

In classical feature-based approach, appropriate features

are extracted from the training images and used them to

train a classifier. Sufficient number of non-pedestrian images

also will be used for training so that the classifier will be

able to discriminate pedestrians and non-pedestrians once

trained. A pedestrian classifier is typically a pattern classi-

fier. The classifier architecture is independent of the type of

object/pattern to be classified, but a trained classifier engine is

specific to a particular problem and object type. The classifier

architecture is selected based on the performance require-

ments as well as the feature descriptors used to uniquely

identify the objects.

The three key elements in building a good classifier are

1) the choice of correct feature descriptor, 2) the use of correct

dataset, and 3) the selection of a good classifier engine. Good

feature selection helps to uniquely identify the object of inter-

est (pedestrian in our case) from other objects in the scene.

A good dataset provides the classifier with enough number of

positive and negative samples which will help the classifier

to formulate an engine which can correctly classify object

of interest from other samples based on the feature vector

values. The classifier is actually learning the classification

by example during the training process. A good engine will

optimally formulate the classifier function so as to provide a

correct classification with minimum usage of computational

power and storage.

From the generic framework of a pedestrian detection sys-

tem, we can find that, in the core of a pedestrian detection

system is a pedestrian classifier, which takes the feature

descriptors extracted from the preprocessed image ROIs and

identifies whether the image contains a pedestrian or not.

Preprocessing is used to select the proper ROI for training as

well as to enhance the ROI so as to improve the uniqueness of
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FIGURE 21. Training of feature-based classifier for pedestrian detection.

the extracted features to represent the object of interest, This

classifier is actually comparing the subject ROI against a set

of known classes of objects in feature space. The set of these

known classes are generated by training the classifier with

sufficiently large set of images of all the known classes. The

classifier training is an offline and iterative process, where,

the classifier engine or the detector will be improved in each

iteration. The sample data used for training should properly

represent each of the classes to be identified. For a pedestrian

detection system, we can view the classifier as a two-class

system, where the classes are named as Pedestrian and Non-

pedestrian. We can label a pedestrian sample as positive sam-

ple and a non-pedestrian sample as negative sample. There

should be sufficient number of positive and negative samples

to be used for training the classifier based on the uniqueness

of the feature vector used.

Through training, the classifier learns to discriminate

pedestrian and non-pedestrian image segments. Figure 21

shows the stages involved in training a classifier. Sufficient

numbers of positive training vectors containing pedestrians

in different orientation are given to the classifier, along with

enough number of non-pedestrian images. These images will

be preprocessed so as to normalize the intensity variations

and to improve the detectability. If the feature descriptors

used are not scale invariant, these images are scaled into

uniform size before the features are extracted. Classifier will

be typically trained with images of a representative size (after

scaling the samples if required) depending on the detection

requirements. Training may also go in multiple iterations by

including false positives and false negatives obtained from

testing as additional negatives and positives in next iteration.

This may be repeated multiple times till the classifier gets

saturated in detection performance.

The classifier architecture used in different solutions may

be different. The selection of an appropriate classifier will

depend on the type of feature used as well as the specific

requirements of the solution. The availability of training

dataset, the training convergence time, the classification time

and classification accuracy are also counted in selecting the

correct feature-classifier combination.

2) TRAINING A CNN WITH SELF-LEARNED FEATURES

In classifiers with self-learned features, feature extraction is

not a separate stage. Optimum features were learned from the

training dataset for best classification. The features here will

FIGURE 22. Training in deep learning with self-learned features for
pedestrian detection.

mostly be simple convolution filter kernels but there will be

many such kernels spread across multiple convolution layers

in the CNN. The networks with many layers are typically

called as deep networks and the machine learning approach

involving deep networks are referred as Deep Learning (DL).

The heart of a DL framework is a feature learning network

like CNN. The DL framework learns best suitable features

as convolution kernels to properly distinguish the training

data set. Once the convolution-pooling layers are completed,

the intermediate output - say features - are fed to a dense

neural network with multiple fully-connected hidden layers.

Learning is done in CNN in a similar way to ANN.

However, the computational requirement is much higher

here. Back-propagation is used for network learning by

adjusting the coefficients of convolution filters and the net-

work weights. The difference between actual output and

expected output is computed and the network parameters are

adjusted progressively from the output layer to input layer

(hence back-propagation). The underlying algorithm is called

Gradient- Descent (GD). GD is computationally complex and

required to pass through all training samples in a stretch

to arrive at an optimized network parameter set. Generally

we use a approximation of GD, the Stochastic Gradient

Descent (SGD) in back propagation for deep networks, where

sample dataset is huge. SGD allows to learn incrementally

on each training sample. For each input (training sample),

the actual output is computed in a forward pass from input

to output layer. Output of each layer is formulated as a an

n-dimensional vector with the layer parameters (like inter-

connection weights, convolution filter coefficients etc.) as

variables. This vector is adjusted by repeatedly adding an

n-dimensional error vector, which is the difference between

actual layer output and expected output. The best error vector

is computed in the direction with minimum difference with

the expected output. This is repeated until a stable minimum

(local minimum) error is achieved. The value of parameters at

this local minimum are taken as the learned parameters. This

process is repeated for each training sample.

One problem with gradient descent algorithm is that the

function may settle at a local minimum without reaching the

global minimum, which will lead to less accurate network.

To avoid this issue, a learning rate parameter is introduced.

Higher the learning rate, faster the convergence but lesser

accuracy. Similarly, the accuracy will be more at cost of

slower convergence when the learning rate is lower. An opti-

mum case will be dynamic learning rate where the learning
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rate will be high in the beginning but will reduce as the

function converges to the global minimum.

Deep learning classifiers require more memory and com-

putational power to get trained. Also as the features are self-

learned, the dependency on proper and sufficient training data

is more compared to feature classifier approach. However,

the DL architecture is highly parallelizable and many stan-

dard DL architectures optimized to highly parallel GP-GPU

platforms are now available free of cost for researchers to use.

Users don’t need to know the internals of these complex DL

framework; they are encapsulated with easy to use interface.

Users can experiment with different network architectures

with a wide variety of tools and chose the best to match their

requirement.

3) FEATURE-BASED PEDESTRIAN CLASSIFICATION

A trained classifier will learn its internal parameters to dis-

tinguish an input - image or a feature vector - belong to a

particular class or not. In our case, to distinguish whether the

object is a pedestrian or not. A classifier may be classifying

only two classes - a class of interest and others - or a set

of classes. If the number of classes a classifier detects is

more than two, the classifier is called a multi-class classifier.

In general, for every input, a classifier will provide a class

membership probability for each output classes. The output

class with maximum class-membership probability value will

be selected and the object will be mapped accordingly.

Object detection is done by using a classifier engine to

separate the image into different known classes based on

the extracted feature descriptors. A classifier will typically

find the best match for a given feature descriptor from a

set of known feature descriptor classes. The classifier will

compute a distance metric between the subject feature and the

class-centers of known classes in the feature space. If there

are multiple classes, a membership probability value will be

assigned to the subject for each of those classes based on the

distance metric. The subject will be assigned to the class with

minimum distance in feature space, provided the distance

is within an allowable threshold. If the class membership

function is equal for different classes, the subject is either

marked as not a member of any of these classes or specific

decision will be taken depending on the target application.

Selection of proper classifier is also very important

in implementing a pedestrian detection system. There

are standard feature classifiers like Artificial Neural

Network (ANN) [77] classifier, Support Vector Machine

(SVM) [34], and boosting based decision tree classifiers like

Adaboost [43]. Many researchers are working on improving

the classification techniques or combining these techniques

for faster convergence in classification. Weak feature cas-

cades like Haar features are typically combined with boosting

whereas HOG and its combinations are usually combined

with SVM or its variants. The channel features also use

boosting based classifiers. Neural network based classifier

were used less where computational time needs to be mini-

mum. Conventionally in pedestrian detection, SVM [34] and

its variants are used for classification. There are variants of

SVM to match different classification requirements. Linear

SVM is low complex version with longer convergence time

compared to a more complex non-linear SVM. Two-class

SVM can be used for applications involving only one type

of object and multi-class SVM is used where objects of more

than two types need to be handled. There are many variations

of SVM like histogram intersection kernel SVM (HikSVM)

proposed by Maji et al. [78] and Latent SVM [48], which use

latent information about the object like hierarchical data, pose

information etc. Most of the original literature in pedestrian

detection are based on HOG or its combinations combined

with variants SVM detector.

Recent papers in pedestrian detection are using variants

of boosting [79] based classifier cascades [80] more than

SVM. Dollar et al. use feature pyramids [36], [37], [54], [60]

combined with Adaboost classifier which is one of the best

in the state of the art solutions for pedestrian detection in

both detection accuracy as well as computational complex-

ity. Saberian and Vasconcelos [81] proposed a new cascade

boosting algorithm called fast cascade boosting (FCBoost),

which generalizes the Adaboost as well as minimizes the

Lagrangian risk so as to improve classification accuracy and

speed. The authors showed that FCBoost outperforms cur-

rent state-of-the-art methods in both detection accuracy and

speed.

In general, in feature-classifier approach, boosting based

adaptive decision trees provide better pedestrian classi-

fication. There are plenty of recent papers discussing

boosting based decision trees as the primary classifica-

tion approach in pedestrian detection. We have already dis-

cussed many improvements suggested in the boosting based

classifiers while we discussed channel features. However,

DL approaches outperform feature-classifier approaches in

recent benchmarks.

VII. PEDESTRIAN DETECTION - DEEP LEARNING

APPROACH

We have already discussed ANN and back propagation learn-

ing process. We also discussed self-learning of features with

Convolutional Neural Network (CNN). The number of hid-

den layers in ANN defines its depth. As the number of hidden

layers are more, the network will become more deep. Deep

learning uses deep network, however, it is not just deep neural

network; the structure of the network itself is different.

A. DEEP LEARNING NETWORKS

One of the most common method used in deep learning

for visual images/videos is a Convolutional Neural Network

(CNN) [64]. Interested readers can find an overview of DL

techniques in [82]. CNN uses multiple convolution and pool-

ing layers along with a dense fully connected network for

classification. The input is not feature vector; but the image

itself. A set of convolution kernels are learned by the system,

by applying which we can extract the features which best

represent properties of the training image set. We can also say
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FIGURE 23. Convolution neural network as classifier.

that, a CNN is a variant of MLP with input layer constructed

with convolution kernels.

Figure 23 shows a typical CNN construction for an object

classification. The input is the image in RGB format. The

features are different convolution kernels used at multiple

convolution layers. Only the size of these kernels are defined

initially. The actual kernel will be learned during training.

In the CNN represented in figure 23, there are two convolu-

tion layers and two pooling layers each. In each convolution

layer, a set of convolution kernels are used to do 2D/3D

convolution on the input image and output of each of these

convolution operations are combined. The convolution output

may also be passed through some activation function like

rectified linear unit (ReLU) to control the output value range.

The next step is reduce the size/volume of the convolution

layer output (called pooling). Size of the image volume is

reduced by simple operations like taking only the maximum

of non-overlapped 2D/3D blocks (called max-pooling). Other

operations can also be used here to reduce the size of the

image volume. Such convolution-pooling layer combinations

may be repeated multiple times in a CNN for processing the

input image.

Once the input processing is complete, the output image

data is serialized and passed to a dense neural network called

the dense layer. A dense layer may contain multiple hidden

layers. The dense layer is then connected to the output layer

where the output class is presented.

During the learning process, all the convolution kernels as

well as weights in the dense layer are learned. The computa-

tional and memory requirement for CNN is much higher than

ANN. However, due to the availability of highly paralleliz-

able GP-GPU platforms, and availability of DL architectures

optimized for them, recently there is an increased focus onDL

for pedestrian detection. This is true to automotive domain

also due to the increasing computational power. Recently,

DL basedmethods outperform conventional feature-classifier

based approaches in pedestrian detection benchmarks. Here

in the remaining part of this section, we discuss on adaptation

of CNNs and DL to automotive pedestrian detection.

CNN is not the only architecture used in DL. There are

other commonly used complex architectures available for

users to implement their learning problem. Each of these

architectures differ in their network organization and com-

plexity. Some of the common architectures are:

• AlexNet [83]

• VGG Net [84]

• GoogleNet [85]

• ResNet [86]

• ResNeXt [87]

• RCNN (Region Based CNN) [88]

• YOLO (You Only Look Once) [89]

• SqueezeNet [90]

• SegNet [91]

• GAN (Generative Adversarial Network) [92]

Many of these architectures can be freely downloaded and

used with DL programming frameworks like TensorFlow,

Caffe, CNTK, PyTorch, Keras, Deeplearning4j, Matlab Deep

learning toolkit etc. to implement different DL solutions

based on our requirement. We can either freshly train these

networks for a new problem or can use the existing knowledge

from the pre-trained models and additionally train for the

new problem using transfer learning [93]. These pre-trained

networks are not specific to pedestrian; but they are typically

multi-object detectors where pedestrian could be one of the

detectable object. These networks were pre-trained with a

huge collection of training vectors, in such high volumes,

which will be practically impossible for a fresh network as the

training time required will be too long. By transfer learning,

we can make use of their object detection capabilities and

convert these generic frameworks to match the automotive

pedestrian detection problem.

B. DEEP LEARNING IN PEDESTRIAN DETECTION

Now let us discuss some of the works in DL in pedes-

trian detection. Hosang et al. explains the inherent issues

and improvement possibilities of CNN for pedestrian

detection [94] by proposing Vanilla ConvNet as an exam-

ple. Luo et al. improves CNN based pedestrian detection

by adding new layers built with a new switchable restricted

Boltzmann machine to form a Switchable Deep Network

(SDN) [95] which automatically learns hierarchical features,

salience maps, and mixture representations of different body

parts.

Xiang et al. [96] and Zhang et al. [97] use region-

based CNN (R-CNNs) for pedestrian detection. They use

a Region Proposal Network (RPN) followed by boosted

forests on shared, high-resolution convolutional feature

maps. The authors show that R-CNNs produce detection

performance comparable to state-of-the art. However, faster

implementations [97] degrades the performance. Cai et al.

proposed [98] a unified deep neural network called as

multi-scale CNN (MS-CNN) for fast multi-scale object

detection using CNN. They could show state of the art

performance at lower computational complexity with 15fps

detection speed on Caltech and KITTI dataset. Li et al. pro-

posed a similar approach called Scale aware Fast R-CNN

(SAF R-CNN) [99], which uses multiple networks to detect

pedestrians at different scales and then combine them adap-

tively to generate the final score.

Du et al. proposed a Fused-Deep Neural Network

(F-DNN) [100], improving both robustness and compu-

tational performance of DNN based pedestrian detection.
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F-DNN uses a single-shot Deep CNN followed by multi-

ple DNNs used in parallel for refinement of the detection.

The outputs of these DNNs are fused using a soft-rejection

based fusion method to compute the final detection con-

fidence. Du et al. also proposed F-DNN-SS [100] by inte-

grating pixel-wise semantic segmentation to F-DNN. Both

these approaches outperform the state-of-the art pedestrian

detection while tested on Caltech and INRIA datasets.

C. DEEPENING THE NETWORK TO IMPROVE

PERFORMANCE

There is a trend in increasing the depth of network for

improved performance. However, deep networks will become

difficult to train as the number of hidden layers increase.

He et al. propose, residual learning framework ResNet [86],

where, Residual functions are used for efficient and fast

learning of deeper networks with layer numbers in order

of hundreds. Wu et al. [101] further improved the ResNet

by proposing an ensemble of shallow networks instead of

a single ultra-deep network for improved performance and

computational efficiency. Also to reduce memory footprint

required to train deeper networks, Bulò et al. [102] proposed

a method by dropping some intermediate results, which could

be recovered during the backward pass with the inversion of

stored-forward results. They could show around 50% reduc-

tion in memory footprint with only less than 2% increase in

computation time. In [103], Zhao et al. discuss modification

on input layers of a deeper network by implementing pyramid

pooling layer with pyramid scene parsing network (PSPNet).

They use a global context fused with information from sub-

regions for efficient segmentation. Zhuang et al. [104] also

suggested improvements on the global context representation.

They propose aggregating dense relation network (DRN) and

context-restricted loss (CRL) to combine global context and

local information.

D. PIXEL-LEVEL AND INSTANCE-LEVEL SEGMENTATION

AND CITYSCAPES DATASET

Cityscape dataset provides both pixel-level and instance level

semantic labeling and this lead to different methods on these

two approaches. In pixel-level semantic segmentation, each

pixel is mapped to a class and the segmented class will be

represented as a set of pixels. Instance-level segmentation

gives a fine segmentation by also separating each instances

of an object of the same class.

1) PIXEL-LEVEL SEMANTIC LABELING

Semantic labeling deals with pixel mapping and normally

discards the spatial relation between neighborhood pixels.

In [105] Ke et al. proposes Adaptive Affinity Field (AAF)

concept to capture the relation between neighborhood pixels

during training to improve pixel-level semantic segmentation

using PSPNet.

To improve inter-class distinction efficiency of deep

networks, Yu et al. [106] propose Discriminative Feature net-

work (DFN), where two subnets, a smooth one and a Border

one are used to separately deal with the class and its boundary

discrimination. This improves the detection and segmentation

performance of fully convolutional networks.

Chen et al. proposed DeepLab [107] where, they improve

the Deep CNNs by incorporating convolution with up-

sampled filters (atrous convolution), atrous spatial pyramid

pooling (ASPP), and improving object boundaries at output

layer by using fully connected conditional random fields

(CRF). Atrous convolution gives control at the resolution

and field of view of the convolution process. ASPP allows

robust segmentation at multiple scales. Authors also sug-

gested improvements on convolution by employing atrous

convolution in cascades and in parallel [108]. In [109] they

further improved DeepLab by adding a decoder module to

refine segmentation results across object boundaries. They

also improved the framework by incorporating meta-learning

techniques and recursive search space for dense image

prediction [110].

2) INSTANCE-LEVEL SEGMENTATION

Instance level segmentation is aimed at segmentation and

classification of every individual object in the scene. There

are many diverse approaches for instance level segmenta-

tion with deep networks. The instance boundary represented

with a bounding box may not be accurate which leads

to partial instance segmentation. Hayder et al. [111] pro-

pose boundary-aware instance segmentation (BAIS) network,

which incorporates an object mask network (OMN) to iden-

tify correct object boundary from a not-perfect bounding box.

OMN refines the output of a deep network to generate perfect

object representation. Arnab and Torr [112] propose a way

to individually identify each instances of objects in a scene

by combining the detector bounding box, semantic segmen-

tation and the object shape information. They use an end-to

end deep network with semantic and instance segmentation

modules.

Liu et al. [113] proposes a sequential grouping of net-

work (SGN) to address instance-level segmentation instead

on standard CNN flow. SGN includes 3 subnets - breakpoint

predicting CNN, a 2-layer fully connected LineNet, and class

specific 3-layer MergerNet. Breakpoint prediction predicts

object boundaries both in horizontal and vertical direction.

These are then used to form line segments and connected

components by LineNet. MergerNet extracts instances from

the connected components. Liu et al. [114] proposes two

parallel similar deep networks to predict pixel level semantic

score and pixel affinities (the relation between two pixels of

the same instance). The pixel affinity and semantic score are

then combined using a graph merge algorithm to group pixels

into instances.

He et al. [115] proposes a method called Mask R-CNN,

by extending Faster R-CNN [88] by adding a mask prediction

parallel to the available bounding box prediction. Achuna

et al. [116] uses their automatic instance annotation method,

PolygonRNN++ on results of a Faster R-CNN detector out-

put for instance level segmentation. For this, they designed a
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new CNN encoder, reinforced learning technique and a graph

Neural Network (GNN) to increase the output resolution.

Liu et al. [117] integrated bottom up path augmentation to

FPN [61] backbone of Faster R-CNN and combined with

adaptive feature pooling for their path aggregation network

(PANet). PANet shows the best instance level segmenta-

tion performance on COCO 2017 challenge and Cityscapes

benchmarking.

Bai and Urtasun [118] integrates the watershed transform

[119] within the deep network for improved instance level

segmentation. In [120], Kendall et al. proposes an efficient

way of simultaneous multi-class instance segmentation using

deep network by using a multi-task loss function. They show

that their approach can outperform a pool of individual clas-

sifiers trained on each class separately. Transfer learning is

also getting more interest among researchers where learnings

from one problem is transferred to another related problem

for faster convergence. Li et al. [121] discusses several sug-

gestions including an explicit inductive bias for improving

transfer learning when a pre-trained coarse classifier is used

and fine-tuned for a fine classification. There are many other

approaches in semantic segmentation which we might have

missed out, but we feel that readers will get an idea of the

current trends from this paper.

VIII. SPECIAL CASES - OCCLUSIONS AND REPEATED

DETECTIONS

We were discussing different methods to detect a pedestrian

from a scene. Most of the features and process we discussed

are for mostly visible pedestrians. But, in practical case,

many of the pedestrians visible may be partially occluded

or hidden behind other objects or pedestrians. Many of the

approaches we have already discussed can be modified to

include partially occluded pedestrians by adaptively training

with partially occluded pedestrians as well as improving the

classifier. However, there are some works [55], [122]–[125]

particularly targeting this problem of occluded pedestrian

detection. We also discussed CityPersons [26] dataset, which

is having special focus to pedestrians occluded at different

levels.

In a search-window based algorithm, there will be multiple

overlapped ROI windows processed at different scales. There

are chances that many of these ROI windows represent same

object from the scene and are detected as different objects by

the classifier. There should be a post processing stage after

object classification to identify these multiple-detections of

same object and selecting only the best to represent the

detected object. This process is known as detection window

clustering or non maximum suppression (NMS). Efficient

detection window clustering will avoid multiple detection

of same object without affecting the detection of different

adjacent objects. In [126], we discussed various methods to

find the best representative detection window without affect-

ing the detection of nearby pedestrians. However, there are

approaches utilizing the presence of multiple pedestrians

and their mutual relationship to improve pedestrian detection

FIGURE 24. Tracking pedestrians and detection of collision risk.

as in [125] and [127]. In [49] Felzenszwalb et al. used a

contextual feature based on normalized scores of multiple

overlapped detections in an SVM classifier trained on Pascal

dataset to re-score the detections. The best among the re-

scored detection is selected. This method introduced further

computational complexity but shows significant detection

improvement.

IX. OBJECT LOCALIZATION AND TRACKING

The information generated by the core modules like pedes-

trian detection by processing the camera images are fed to

the ADAS system, where different applications will analyze

this data and take appropriate actions. The action may be

simply providing an indication to the driver or even actively

controlling the vehicle so as to avoid any critical situation.

Object detection based ADAS applications may need to

identify the type of object and its current position with respect

to the vehicle. Appropriate actions will be taken to analyze

this and avoid any possible safety threat. Object tracking

based applications will track these objects in successive video

frames and compute the movement path of the object of

interest. The motion paths of each objects detected by the

object detection module will be closely analyzed and the

potential future movement will be predicted from it. This

information will be compared against the predicted motion

path of the vehicle so as to identify the possibility of a

hit. This analysis report will be provided to the ADAS

application and the applications will then communicate the

driver or automatically control the vehicle so as to avoid

the casualty. Figure 24 illustrates tracking pedestrians and

the associated risk of collision. Here 4 pedestrians are being

tracked and two cases are found more risky. Pedestrian 2 is

moving out of the vehicle path in a fast pace, but is still

risky because if he stopped moving, there will be a collision.

Pedestrian 3 is surely a high risk case because he is moving

towards the vehicle path in a slow pace. Pedestrian 4 follows

a slanted path and in case he decides to cross the road,

it will lead to a collision and thus treated as a slightly risky

case.
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Object tracking is different from object detection. Object

need not be recognized (like as a pedestrian) before track-

ing; any moving object can be tracked. If only one object

is present, tracking will be straightforward. However, in a

practical case where there could bemultiple objects identified

in a frame, they needs to be uniquely numbered and each

of them needs to be tracked in successive frames. For this

the objects in a frame should be matched to objects in next

frame before tracking. When the objects are similar, like in

the case of multiple pedestrians, the matching and tracking

becomes more complex. ROIs corresponding to each of the

pedestrian objects are extracted as templates from a frame and

will be used to map the detections in the next frame. These

ROI templates or some features generated from them can be

used to find the corresponding object in the next frame. The

techniques to match the objects vary from simple template

matching through Mean Square Error (MSE), or fairly com-

plex shape or contour tracking to application of a classifier

like SVM.

Because of the importance of tracking in pedestrian detec-

tion, there is an increasing trend in combining them together.

Methods of tracking by detection or detection by tracking

are also attempted. K Okumo et al. use a mixture model that

incorporates information from the dynamic models of each

object and the detection hypotheses generated by Adaboost to

detect and track hokey players in [128]. Wu and Nevatia [13]

use human body part detection for detecting and tracking

humans. In [129], Avidan used an ensemble of weak clas-

sifiers which then combined into a strong classifier using

Adaboost where the peak detection of the strong classifier

is used to track pedestrians in successive images. Leibe

et al. [130] considered object detection and tracking estima-

tion as a coupled optimization problem. They used an implicit

object model and combined local features to detect and track

humans. Andriluka et al. [19] improved this approach by

combining advantages of detection and tracking in a single

framework.

Object tracking itself is a wide area, with a huge collection

of literature. The focus of this paper is pedestrian detection

and a detailed study of tracking methods is out of the scope

of this document. However, a rough outline of object track-

ing is given to highlight that, in ADAS, it is also equally

important like object detection. Ragland and Tharcis provides

details of different tracking approaches in their survey [131].

Interested readers can also refer recent paper by Rangesh

and Trivedi [132] for more details on multi-object tracking

in automotive scenario.

X. ALGORITHM EVALUATION

This section provides a general discussion and comparison

of different pedestrian detection solutions proposed by the

research community. We are mainly comparing the algo-

rithm performance on two different datasets. Firstly, the Cal-

tech dataset and secondly the Cityscapes dataset. Caltech

TABLE 3. Classifier-dataset combinations used in different solutions
evaluated on Caltech dataset.
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dataset is generally used for all types of algorithms, whereas,

Cityscapes are primarily used by DL based algorithms.

We have used the reference code provided by Dollar in

his website [133] for performance comparison of different

pedestrian detection solutions on Caltech dataset whereas

data available on Cityscapes website is used for performance

evaluation of algorithms on it. Interested readers can visit

website of department of Computational Vision, California

Institute of Technology (Caltech) [134] to get more details on

the Caltech benchmarking suite. The comparison code was

run on an Intel core-i5 PC with NVIDIA GeForce 940 MX

GPU card to measure the execution time. The execution

time needs to be treated as relative to compare the algorithm

performance. Absolute values may slightly vary system to

system. We are providing a snapshot of the benchmarking

results to make this document as a single point reference.

A. DATASETS AND ALGORITHMS FOR PERFORMANCE

EVALUATION

Table 3 lists different algorithms used on Caltech dataset

for performance comparison and the combination of feature

descriptor, classifier and training dataset used to generate the

results. We can see that Caltech dataset is preferred by many

algorithm. Cityscapes and CityPersons datasets are relative

new and thus used by less number of researchers. Channel

filters and their variants are most preferred by researchers

mainly because of the ease of parallelizing the execution

using GPUs. For DL based methods, image pixels is directly

fed to the system as the features are learned internally.

We have already discussed the importance of these in previ-

ous sections. We can also see that boosting based decision

trees are the most preferred and most successful classifier

of choice in recent studies for feature classifier approaches.

SVM and its variants are also still getting sufficient

attention.

We have also captured the best performing DL based algo-

rithms on Cityscapes [25] dataset. Both pixel-based as well

as instance based approaches are considered. Top 10 methods

with proper reference available as of the time of preparation

of this paper are selected for illustration. Table 4 gives a

listing of the algorithms.

B. EVALUATION METRICS

Some of the common metrics used for benchmarking the

performance of pedestrian detection solutions (also applica-

ble for any object detection problem) are listed in Table 5,

which is self explanatory. The typical metrics used on Caltech

dataset are Precision, Recall, FPPI , and MissRate, whereas

the metrics used in Cityscapes datasets are IoU and AP.

None of these metrics provide a perfect representation of

performance of a pedestrian detection algorithm. However,

they help us in relatively ranking the algorithms.

C. EVALUATION RESULTS

On Caltech dataset, we have used both PR − curve and

Miss − rate vs FPPI curve to represent top 15 algorithms.

TABLE 4. Deep learning algorithms used for performance evaluation on
Cityscapes dataset.

TABLE 5. Common acronyms and metrics used for evaluating pedestrian
detectors.

Results of Viola Johns Haar features (VJ) and Histogram of

Oriented Gradients (HOG) are also given for an idea on how

far we have improved from the beginning. Figure 25 shows

the Missrate vs FPPI performance of top 15 algorithms

whereas figure 26 shows the top 15 when we compare the

Precision vs Recall. We can see that the algorithms comes in

top on these two metrics are different. This also affirms that

no metric can be universally recommended as the best one.

However, Missrate vs FPPI plot is more preferred against

PR− curve.

We have also compared the algorithms on Caltech for their

execution speed. Figure 27 shows the 15 fastest algorithms on
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FIGURE 25. Miss Rate vs FPPI Plot of best 15 algorithms with VJ and HOG
on Caltech USA dataset.

FIGURE 26. PR Curve for best 15 algorithms with VJ and HOG on Caltech
USA dataset.

FIGURE 27. Execution speed and miss rate of 15 fastest algorithms on
Caltech USA dataset.

Caltech evaluation. Log-averagemiss rate of these algorithms

are also plotted on the same graph for a better evaluation.

We can see that even though the detection performance is

increasing, the computational requirements and execution

speed is not yet to the expected levels. Only two algorithms

are showing reasonably good execution speed. Crosstalk is

clearly dominating the evaluated algorithms in execution

speed (with 34 frame per second execution) and 30% log-

average miss rate (AMR).

Cityscapes dataset is specially designed for deep learn-

ing based object detection. Cityscapes provides benchmark

performance on Instance level as well as pixel level seman-

tic labeling. For pixel level semantic labeling performance

comparison, they use PASCAL VOC intersection-over-union

(IoU) [31] as performance metric and for instance level

semantic labeling, they use Average Precision (AP) [155] as

performance metric.

FIGURE 28. Pixel-level semantic labeling performance (IoU) of top
10 algorithms on Cityscapes dataset.

FIGURE 29. Instance-level semantic labeling performance (AP) of
top 10 algorithms on Cityscapes dataset.

We include the pedestrian detection performance of top

10 algorithms (with accessible reference) performing best

on both pixel-level and instance-level semantic labeling

on Cityscapes dataset in figure 28 and figure 29 respec-

tively. Interested users can visit Cityscapes website [25] for

a detailed performance benchmarking of various algorithms

on their dataset.

From the analysis, we can see that the algorithm perform-

ing best on one dataset may not perform well on another

dataset. This shows that the solutions proposed are far from a

generic ideal solution. The performance of algorithms depend

heavily on the dataset used to train the detector as well as the

dataset on which the detector is tested.

XI. RESEARCH TRENDS AND OPPORTUNITIES

We have discussed some of the recent advances in pedes-

trian detection problem by addressing different stages of the

process separately. Deep learning based pedestrian detection

is getting more focus recently against the classical-feature

classifier approaches. Many techniques in feature-classifier

approach are now getting applied into DL networks for
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improved performance. Availability of highly parallelizable

platforms like multi-core GP-GPU hardware and NVIDIA

CuDNN like software libraries help in efficient implemen-

tation of DL based object detection solutions efficiently.

However, the feature-classifier approach is still in focus and

improvements are being suggested by researchers. The gen-

eral trends we can find in feature-classifier approach can

be summarized as 1) use preprocessing techniques so as to

reduce the search space and improve the feature extraction,

2) combine best known features to form stronger features,

3) make use of feature pyramids as possible to reduce compu-

tational load, 4) chose multi-stage boosting with a bundle of

weak classifier instead of single strong classifier, and 5) chose

features and classifiers which can efficiently run on parallel

hardware platforms. In DL, the focus is on optimizing the

convergence time and improving the performance, computa-

tional complexity and memory requirements of the network.

Even with all the advances in object detection in recent years,

fail-safe pedestrian detection that will work on all weather

conditions and road conditions is still far from reality.

XII. CONCLUSION

Pedestrian detection is one of the hot topics in ADAS.

Researchers are working to develop a robust real-time solu-

tion with high detection rate and minimum false detections

particularly in harsh environment. However, the detection

performance as well as the computational complexity of

available solutions is far behind the expectation from auto-

motive industry, especially when the automotive industry is

moving towards the driver-less cars. This paper is an attempt

to understand the techniques used in pedestrian detection par-

ticularly in automotive domain. We conclude this discussion

by highlighting that there is high demand for low-cost and

robust solutions. There is high potential of research in this

area. The solutions that can solve the pedestrian detection

issues will also find application in other object detection

and tracking problems across the digital image processing

domain.
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