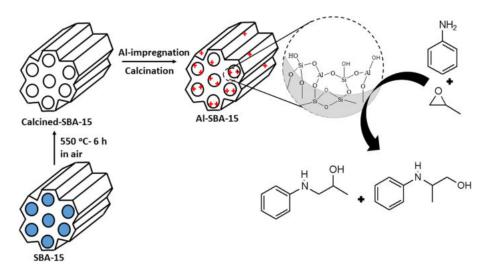


Aluminium Oxide Supported on SBA-15 Molecular Sieves as Potential Lewis Acid Catalysts for Epoxide Ring Opening Using Aniline

Rekha Yadav¹ · Akhila Muralidhar² · A. Shamna² · P. Aghila² · Lakshmiprasad Gurrala³ · Ayyamperumal Sakthivel²


Received: 8 February 2018 / Accepted: 15 March 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

A series of aluminium oxide (Al_2O_3) -supported SBA-15 molecular sieves were prepared using a one-step wet-impregnation method. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared spectroscopy and ammonia TPD were used to investigate the structures and chemical natures of the surface-bound species. The FT-IR studies of metal-impregnated SBA-15 materials revealed strong covalent interaction of Al_2O_3 on SBA-15 materials with strong Lewis acidic properties, evident from ammonia-TPD studies. The metal oxide-supported SBA-15 catalysts are active for epoxide ring opening with aniline at room temperature, and showed remarkably high stability and selectivity towards mono-alkylated products (about 86%) viz., 1-(phenylamino)propan-2-ol and 2-(phenylamino)propan-1-ol. The catalytic activities remained intact after several recycles. The observed activities and selectivities were compared with other metal oxide-loaded SBA-15 catalysts obtained by similar preparation methods.

Graphical Abstract

Aluminium oxide supported SBA-15 molecular sieves were prepared using a one-step wet-impregnation method. The materials showed strong Lewis acidic sites and promising catalytic activity for epoxide ring opening with aniline at room temperature.

Keywords Epoxide ring opening \cdot Kinetics \cdot β -Amino alcohol \cdot Al₂O₃-SBA-15 \cdot Molecular sieves

Akhila Muralidhar and A. Shamna have equally contributed to this work.

Extended author information available on the last page of the article

Published online: 22 March 2018

